Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Aug 22;272(34):21461-6.
doi: 10.1074/jbc.272.34.21461.

Biochemical characterization of the Wilson disease protein and functional expression in the yeast Saccharomyces cerevisiae

Affiliations
Free article

Biochemical characterization of the Wilson disease protein and functional expression in the yeast Saccharomyces cerevisiae

I H Hung et al. J Biol Chem. .
Free article

Abstract

Wilson disease is a disorder of copper metabolism characterized by hepatic cirrhosis and neuronal degeneration due to inherited mutations in a gene encoding a putative copper-transporting P-type ATPase. Polyclonal antisera generated against the amino terminus of the Wilson protein detected a specific 165-kDa protein in HepG2 and CaCo cell lysates. Further analysis revealed that this protein is synthesized as a single-chain polypeptide and localized to the trans-Golgi network under steady state conditions. An increase in the copper concentration resulted in the rapid movement of this protein to a cytoplasmic vesicular compartment. This copper-specific cellular redistribution of the Wilson protein is a reversible process that occurs independent of a new protein synthesis. Expression of the wild-type but not mutant Wilson protein in the ccc2Delta strain of Saccharomyces cerevisiae restored copper incorporation into the multicopper oxidase Fet3p, providing direct evidence of copper transport by the Wilson protein. Taken together these data reveal a remarkable evolutionary conservation in the cellular mechanisms of copper metabolism and provide a unique model for the regulation of copper transport into the secretory pathway of eucaryotic cells.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources