Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 1997 Aug;16(4):447-62.
doi: 10.1109/42.611354.

Registration of head volume images using implantable fiducial markers

Affiliations
Clinical Trial

Registration of head volume images using implantable fiducial markers

C R Maurer Jr et al. IEEE Trans Med Imaging. 1997 Aug.

Abstract

In this paper, we describe an extrinsic-point-based, interactive image-guided neurosurgical system designed at Vanderbilt University, Nashville, TN, as part of a collaborative effort among the Departments of Neurological Surgery, Computer Science, and Biomedical Engineering. Multimodal image-to-image (II) and image-to-physical (IP) registration is accomplished using implantable markers. Physical space tracking is accomplished with optical triangulation. We investigate the theoretical accuracy of point-based registration using numerical simulations, the experimental accuracy of our system using data obtained with a phantom, and the clinical accuracy of our system using data acquired in a prospective clinical trial by six neurosurgeons at four medical centers from 158 patients undergoing craniotomies to resect cerebral lesions. We can determine the position of our markers with an error of approximately 0.4 mm in X-ray computed tomography (CT) and magnetic resonance (MR) images and 0.3 mm in physical space. The theoretical registration error using four such markers distributed around the head in a configuration that is clinically practical is approximately 0.5-0.6 mm. The mean CT-physical registration error for the phantom experiments is 0.5 mm and for the clinical data obtained with rigid head fixation during scanning is 0.7 mm. The mean CT-MR registration error for the clinical data obtained without rigid head fixation during scanning is 1.4 mm, which is the highest mean error that we observed. These theoretical and experimental findings indicate that this system is an accurate navigational aid that can provide real-time feedback to the surgeon about anatomical structures encountered in the surgical field.

PubMed Disclaimer

LinkOut - more resources