Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Aug 26;36(34):10384-92.
doi: 10.1021/bi970760v.

Carbonic anhydrase activators: X-ray crystallographic and spectroscopic investigations for the interaction of isozymes I and II with histamine

Affiliations

Carbonic anhydrase activators: X-ray crystallographic and spectroscopic investigations for the interaction of isozymes I and II with histamine

F Briganti et al. Biochemistry. .

Abstract

The interaction of native and Co(II)-substituted isozymes I and II of carbonic anhydrase (CA) with histamine, a well-known activator, was investigated kinetically, spectroscopically, and X-ray crystallographically. This activator is of the noncompetitive type with 4-nitrophenyl acetate and CO2 as substrates for both HCA I and HCA II. The electronic spectrum of the adduct of Co(II)-HCA II with histamine is similar to the spectrum of the Co(II)-HCA II-phenol adduct, being only slightly different from that of the uncomplexed enzyme. This is the first spectroscopic evidence that the activator molecule binds within the active site, but not directly to the metal ion. X-ray crystallographic data for the adduct of HCA II with histamine showed that the activator molecule is bound at the entrance of the active site cavity in a position where it may actively participate in shuttling protons between the active site and the bulk solvent. The role of the activators and the reported X-ray crystal structure of the HCA II-histamine adduct has prompted us to reexamine the X-ray structures of the different CA isozymes in order to find a structural basis accounting for their large differences in catalytic rate. A tentative explanation is proposed on the basis of possible pathways of proton transfer, which constitute the rate-limiting step in the catalytic reaction.

PubMed Disclaimer

Publication types

Associated data

LinkOut - more resources