Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Aug 29;272(35):21665-8.
doi: 10.1074/jbc.272.35.21665.

Yeast Rad7-Rad16 complex, specific for the nucleotide excision repair of the nontranscribed DNA strand, is an ATP-dependent DNA damage sensor

Affiliations
Free article

Yeast Rad7-Rad16 complex, specific for the nucleotide excision repair of the nontranscribed DNA strand, is an ATP-dependent DNA damage sensor

S N Guzder et al. J Biol Chem. .
Free article

Abstract

In eukaryotes, nucleotide excision repair of ultraviolet light-damaged DNA is a highly intricate process that requires a large number of evolutionarily conserved protein factors. Genetic studies in the yeast Saccharomyces cerevisiae have indicated a specific role of the RAD7 and RAD16 genes in the repair of transcriptionally inactive DNA. Here we show that the RAD7- and RAD16-encoded products exist as a complex of 1:1 stoichiometry, exhibiting an apparent dissociation constant (Kd) of <4 x 10(-10) M. The Rad7-Rad16 complex has been purified to near homogeneity in this study and is shown to bind, in an ATP-dependent manner and with high specificity, to DNA damaged by ultraviolet light. Importantly, inclusion of the Rad7-Rad16 complex in the in vitro nucleotide excision repair system that consists entirely of purified components results in a marked stimulation of damage specific incision. Thus, Rad7-Rad16 complex is the ATP-dependent DNA damage sensor that specifically functions with the ensemble of nucleotide excision repair factor (NEF) 1, NEF2, NEF3, and replication protein A in the repair of transcriptionally inactive DNA. We name this novel complex of Rad7 and Rad16 proteins NEF4.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources