Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Aug;73(4):298-305.

Echistatin induces decrease of pp125FAK phosphorylation, disassembly of actin cytoskeleton and focal adhesions, and detachment of fibronectin-adherent melanoma cells

Affiliations
  • PMID: 9270872

Echistatin induces decrease of pp125FAK phosphorylation, disassembly of actin cytoskeleton and focal adhesions, and detachment of fibronectin-adherent melanoma cells

N Staiano et al. Eur J Cell Biol. 1997 Aug.

Abstract

B16-BL6 mouse melanoma cells cultured on fibronectin-coated dishes were detached by treatment with echistatin, an RGD-containing disintegrin. Echistatin was active at micromolar concentrations and was not cytotoxic. Its effect was dose-dependent and reversible. Sequential morphological changes leading to rounding up of the cells were detected by phase-contrast microscopy and by immunofluorescence analysis. A dramatic reduction in the number and size of focal adhesions and loss of cytoplasmic actin filaments were observed well before cell detachment occurred. Echistatin treatment down-regulated the phosphorylation of pp125FAK in fibronectin-adherent cells in a dose- and time-dependent fashion. The reduction of pp125FAK phosphorylation preceded cell detachment and occurred even in the presence of orthovanadate, an inhibitor of protein tyrosine phosphatases. These results suggest that echistatin detaches cells from the fibronectin substratum by inducing a decrease of pp125FAK phosphorylation and that echistatin acts by inhibiting protein tyrosine kinase activity rather than activating protein tyrosine phosphatases.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources