Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Oct 1;145(1):77-88.
doi: 10.1016/s0025-5564(97)00039-4.

Infectious disease persistence when transmission varies seasonally

Affiliations

Infectious disease persistence when transmission varies seasonally

B G Williams et al. Math Biosci. .

Abstract

The generation reproduction number, R0, is the fundamental parameter of population biology. Communicable disease epidemiology has adopted R0 as the threshold parameter, called the basic case reproduction number (or ratio). In deterministic models, R0 must be greater than 1 for a pathogen to persist in its host population. Some standard methods of estimating R0 for an endemic disease require measures of incidence, and the theory underpinning these estimators assumes that incidence is constant through time. When transmission varies periodically (e.g., seasonally), as it does for most pathogens, it should be possible to express the criterion for long-term persistence in terms of some average transmission (and hence incidence) rate. A priori, there are reasons to believe that either the arithmetic mean or the geometric mean transmission rate may be correct. By considering the problem in terms of the real-time growth rate of the population, we are able to demonstrate formally that, to a very good approximation, the arithmetic mean transmission rate gives the correct answer for a general class of infection functions. The geometric mean applies only to a highly restricted set of cases. The appropriate threshold parameter can be calculated from the average transmission rate, and we discuss ways of doing so in the context of an endemic vector-borne disease, canine leishmaniasis.

PubMed Disclaimer

Publication types

LinkOut - more resources