Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1997 Aug;273(2 Pt 2):F179-92.
doi: 10.1152/ajprenal.1997.273.2.F179.

Mechanisms of chloride transport in the proximal tubule

Affiliations
Review

Mechanisms of chloride transport in the proximal tubule

P S Aronson et al. Am J Physiol. 1997 Aug.

Abstract

The major fraction of filtered Cl- is reabsorbed in the proximal tubule. An important component of Cl- reabsorption is passive and paracellular, driven by the lumen-negative potential difference in the early proximal tubule and the outwardly directed concentration gradient for Cl- in the later proximal tubule. Evidence suggests that a significant additional component of NaCl reabsorption in the proximal tubule is active and transcellular. Cl-/formate and Cl-/oxalate exchangers have been identified as mechanisms of uphill Cl- entry across the apical membrane. For steady-state Cl- absorption to occur by these mechanisms, formate and oxalate must recycle from lumen to cell. Recent studies indicate that recycling of formate occurs by H(+)-coupled formate transport in parallel with Na+/H+ exchange, whereas oxalate recycling takes place by oxalate/sulfate exchange in parallel with Na(+)-sulfate cotransport. The predominant route for Cl- exit across the basolateral membrane is via Cl- channels. Unresolved issues include the adequacy of formate recycling to sustain Cl- absorption by Cl-/formate exchange, the existence and contributions of additional mechanisms for apical Cl entry and basolateral Cl- exit, and the relative magnitudes of transcellular and paracellular transport under physiological conditions. In addition, the molecular identification and mechanisms of regulation of the Cl-/formate and Cl-/oxalate exchangers remain to be defined.

PubMed Disclaimer

Publication types

LinkOut - more resources