Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Aug 28;388(6645):888-91.
doi: 10.1038/42270.

Kinetochores distinguish GTP from GDP forms of the microtubule lattice

Affiliations

Kinetochores distinguish GTP from GDP forms of the microtubule lattice

F F Severin et al. Nature. .

Abstract

During prometaphase in mitotic cell division, chromosomes attach to the walls of microtubules and subsequently move to microtubule ends, where they stay throughout mitosis. This end-attachment seems to be essential for correct chromosome segregating. However, the mechanism by which kinetochores, the multiprotein complexes that link chromosomes to the microtubules of the mitotic spindle, recognize and stay attached to microtubule ends is not understood. One clue comes from the hydrolysis of GTP that occurs during microtubule polymerization. Although tubulin dimers must contain GTP to polymerize, this GTP is rapidly hydrolysed following the addition of dimers to a growing polymer. This creates a microtubule consisting largely of GDP-tubulin, with a small cap of GTP-tubulin at the end. It is possible that kinetochores distinguish the different structural states of a GTP- versus a GDP-microtubule lattice. We have examined this question in vitro using reconstituted kinetochores from the yeast Saccharomyces cerevisiae. We found that kinetochores in vitro bind preferentially to GTP- rather than GDP-microtubules, and to the plus-end preferentially over the lattice. Our results could explain how kinetochores stay at microtubule ends and thus segregate chromosomes correctly during mitosis in vivo. This result demonstrates that proteins exist that can distinguish the GTP conformation of the microtubule lattice.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources