Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Aug 25;235(1):28-34.
doi: 10.1006/excr.1997.3643.

A factor with a zinc- and phorbol ester-binding domain is necessary for endosome fusion

Affiliations

A factor with a zinc- and phorbol ester-binding domain is necessary for endosome fusion

A Aballay et al. Exp Cell Res. .

Abstract

An inhibitory effect of several zinc chelators on endosome fusion reconstituted in an in vitro system has been recently reported (A. Aballay et al., 1995, Biochem. J. 312, 919-923). The factor that requires zinc for its activity is still unknown. Since the regulatory domain of protein kinase C (PKC) contains cysteine-rich motifs which coordinate zinc, we suspected that PKC or a PKC-like protein might be that factor. To test this hypothesis, we studied the effect of calphostin C, a specific inhibitor of PKC that interacts with the cysteine-rich motif, and PMA (phorbol 12-myristate 13-acetate), an activator of several PKC isoforms that bind to the same region, on endosome fusion. Calphostin C inhibited endosome fusion in a zinc-regulated manner, whereas PMA enhanced endosome fusion. Moreover, fusion was strongly stimulated when both PMA and zinc were added together to zinc-depleted fusion reactions. Inhibitors of the catalytic domain of PKC had no effect on the assay suggesting that the kinase activity is not required. In contrast, a glutathione S-transferase fusion protein containing a cysteine-rich region of the regulatory domain of PKCgamma inhibited endosome fusion in a PMA-dependent manner. Western blot analysis demonstrated the presence of proteins containing PKC-like cysteine-rich regions that are released from endosomal fractions by zinc chelators. These results indicate that the previously proposed zinc-dependent factor required for endosome fusion could be either a PKC isoform or a protein containing the phorbol ester-binding domain of PKC.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources