A central segment of the NG2 proteoglycan is critical for the ability of glioma cells to bind and migrate toward type VI collagen
- PMID: 9281375
- DOI: 10.1006/excr.1997.3674
A central segment of the NG2 proteoglycan is critical for the ability of glioma cells to bind and migrate toward type VI collagen
Abstract
Previous studies have established that the NG2 proteoglycan binds directly to type VI collagen. To further our understanding of the biochemical and functional significance of this interaction we have used NG2 cDNA to construct a series of NG2 mutants with deletions spaced throughout the entire length of the 260-kDa NG2 core protein. Following transfection of these mutant cDNAs into B28 glioma cells, we determined the ability of mutant NG2 molecules to anchor type VI collagen on the cell surface. Eight of 11 transfectant populations were able to anchor type VI collagen. The three NG2 variants incapable of anchoring type VI collagen have deletions clustered within the central one-third of the NG2 ectodomain. These deletions identify a 469-amino-acid domain of NG2 responsible for binding of type VI collagen. Functional consequences of the NG2-type VI collagen interaction were explored by testing the relative ability of NG2-transfected and untransfected glioma cells to migrate toward type VI collagen. NG2-expressing cells exhibited a greater migratory response toward type VI collagen than their NG2-negative counterparts. This enhanced migration could be specifically inhibited with NG2 antibodies. Furthermore, glioma cells expressing NG2 in which the collagen-binding domain was deleted failed to exhibit this enhanced migration, whereas NG2 mutants in which non-collagen-binding regions were deleted continued to exhibit increased chemotaxis toward the type VI collagen. These comparisons confirm the importance of the central collagen-binding domain in mediating functionally important interactions between NG2 and type VI collagen.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
- Full Text Sources
- Other Literature Sources
- Molecular Biology Databases
 
        