Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1997 Sep;44(9):856-66.
doi: 10.1109/10.623055.

Wavelet image extension for analysis and classification of infarcted myocardial tissue

Affiliations
Comparative Study

Wavelet image extension for analysis and classification of infarcted myocardial tissue

A Mojsilović et al. IEEE Trans Biomed Eng. 1997 Sep.

Abstract

Some computer applications for tissue characterization in medicine and biology, such as analysis of the myocardium or cancer recognition, operate with tissue samples taken from very small areas of interest. In order to perform texture characterization in such an application, only a few texture operators can be employed: the operators should be insensitive to noise and image distortion and yet be reliable in order to estimate texture quality from the small number of image points available. In order to describe the quality of infarcted myocardial tissue, we propose a new wavelet-based approach for analysis and classification of texture samples with small dimensions. The main idea of this method is to decompose the given image with a filter bank derived from an orthonormal wavelet basis and to form an image approximation with higher resolution. Texture energy measures calculated at each output of the filter bank as well as energies of synthesized images are used as texture features in a classification procedure. We propose an unsupervised classification technique based on a modified statistical t-test. The method is tested with clinical data, and the classification results obtained are very promising. The performance of the new method is compared with the performance of several other transform-based methods. The new algorithm has advantages in classification of small and noisy input samples, and it represents a step toward structural analysis of weak textures.

PubMed Disclaimer

Publication types