Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Sep 1;7(9):682-8.
doi: 10.1016/s0960-9822(06)00295-8.

Essential functions of ezrin in maintenance of cell shape and lamellipodial extension in normal and transformed fibroblasts

Affiliations
Free article

Essential functions of ezrin in maintenance of cell shape and lamellipodial extension in normal and transformed fibroblasts

R F Lamb et al. Curr Biol. .
Free article

Abstract

Background: Changes in cell shape and motility are important manifestations of oncogenic transformation, but the mechanisms underlying these changes and key effector molecules in the cytoskeleton remain unknown. The Fos oncogene induces expression of ezrin, the founder member of the ezrin/radixin/moesin (ERM) protein family, but not expression of the related ERM proteins, suggesting that ezrin has a distinct role in cell transformation. ERM proteins have been suggested to link the plasma membrane to the actin-based cytoskeleton and are substrates and anchoring sites for a variety of protein kinases. Here, we examined the role of ezrin in cellular transformation.

Results: Fos-mediated transformation of Rat-1 fibroblasts resulted in an increased expression and hyperphosphorylation of ezrin, and a concomitant increased association of ezrin with the cortical cytoskeleton. We tagged ezrin with green fluorescent protein and examined its distribution in normal and Fos-transformed fibroblasts: ezrin was concentrated at the leading edge of extending pseudopodia of Fos-transformed Rat-1 cells, and was mainly cytosolic in normal Rat-1 cells. Functional ablation of ezrin by micro-CALI (chromophore-assisted laser inactivation) blocked plasma-membrane ruffling and motility of Fos-transformed fibroblasts. Ablation of ezrin in normal Rat-1 cells caused a marked collapse of the leading edge of the cell.

Conclusions: Ezrin plays an important role in pseudopodial extension in Fos-transformed Rat-1 fibroblasts, and maintains cell shape in normal Rat-1 cells. The increased expression, hyperphosphorylation and subcellular redistribution of ezrin upon fibroblast transformation coupled with its roles in cell shape and motility suggest a critical role for ezrin in oncogenic transformation.

PubMed Disclaimer

Publication types

LinkOut - more resources