Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Sep;46(9):1468-72.
doi: 10.2337/diab.46.9.1468.

The TNF-alpha gene Nco I polymorphism influences the relationship among insulin resistance, percent body fat, and increased serum leptin levels

Affiliations

The TNF-alpha gene Nco I polymorphism influences the relationship among insulin resistance, percent body fat, and increased serum leptin levels

J M Fernández-Real et al. Diabetes. 1997 Sep.

Abstract

Tumor necrosis factor-alpha (TNF-alpha), acting as a modulator of gene expression in adipocytes, is implicated in the development of insulin resistance and obesity. The aim of this study was to investigate whether the Nco I polymorphism of the TNF-alpha gene influences the relationship among insulin resistance, percent body fat, and serum leptin levels. A sample of 38 subjects (19 men, mean age 36.2 +/- 1.9 years, BMI 28.8 +/- 1.2 kg/m2, range 22.2-35.7; and 19 women, age 34.9 +/- 1.4 years, BMI 28.1 +/- 0.8 kg/m2, range 19-37.9) was divided into two groups on the basis of the Nco I genotype. Twenty-three subjects were (+/+) homozygotes for the presence of the Nco I restriction site that is associated with a guanine at position -308 of the TNF-alpha promoter. Of the other subjects, 12 were (+/-) heterozygotes and 3 (-/-) homozygotes for the absence of the restriction site, resulting from a guanine-to-adenine substitution at position -308 of the TNF-alpha promoter. This substitution (termed TNF-2) leads to higher rate of transcription of TNF-alpha than the wild-type allele TNF-1 in vitro. TNF-1 (+/+) and TNF-2 (+/- and -/-) groups of subjects were comparable in sex, age, BMI, waist-to-hip ratio, and several skinfold measurements. Basal serum insulin was greater (14.2 +/- 2 vs. 9.2 +/- 0.9 mU/l, P = 0.041) in the TNF-2 group in the presence of comparable serum glucose concentration. The integrated area under the curve of serum insulin concentrations, measured in response to a 75-g oral glucose challenge, and the percent body fat, measured by bioelectric impedance, were significantly increased in TNF-2 subjects (226.8 +/- 33 vs. 139.4 +/- 17.8 mU/l, P = 0.032; 33.6 +/- 2.8 vs. 24.9 +/- 2%, P = 0.01). TNF-2 subjects also showed a decreased insulin sensitivity index, as determined by the frequently sampled intravenous glucose tolerance test with minimal model analysis (1.9 +/- 0.4 vs. 3.05 +/- 0.3 min(-1) x mU(-1) x l(-1), P = 0.03). These differences were more marked among women. Paralleling the known relationship between insulin and leptin levels, serum leptin concentration was clearly increased in the TNF-2 group (19.6 +/- 3.4 vs. 11.1 +/- 1.5 ng/ml, P = 0.03). Therefore, (+/-) heterozygotes and (-/-) homozygotes may be more susceptible to developing insulin resistance and increased percent body fat. Results of the present study suggest that TNF-alphaNco I polymorphism may exacerbate the alterations in leptin levels normally found among insulin-resistant subjects.

PubMed Disclaimer

Publication types