Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Jun;105(6):622-35.
doi: 10.1289/ehp.97105622.

The effect of outdoor fungal spore concentrations on daily asthma severity

Affiliations

The effect of outdoor fungal spore concentrations on daily asthma severity

R J Delfino et al. Environ Health Perspect. 1997 Jun.

Abstract

The relationship between day-to-day changes in asthma severity and combined exposures to community air pollutants and aeroallergens remains to be clearly defined. We examined the effects of outdoor air pollutants, fungi, and pollen on asthma. Twenty-two asthmatics ages 9-46 years were followed for 8 weeks (9 May-3 July 1994) in a semirural Southern California community around the air inversion base elevation (1,200 ft). Daily diary responses included asthma symptom severity (6 levels), morning and evening peak expiratory flow rates (PEFR), and as-needed beta-agonist inhaler use. Exposures included 24-hr outdoor concentrations of fungi, pollen, and particulate matter with a diameter < 10 microns (PM10; maximum = 51 micrograms/m3) and 12-hour day-time personal ozone (O3) measurements (90th percentile = 38 ppb). Random effects longitudinal regression models controlled for autocorrelation and weather. Higher temperatures were strongly protective, probably due to air conditioning use and diminished indoor allergens during hot, dry periods. Controlling for weather, total fungal spore concentrations were associated with all outcomes: per minimum to 90th percentile increase of nearly 4,000 spores/m3, asthma symptom scores increased 0.36 (95% CI, 0.16-0.56), inhaler use increased 0.33 puffs (95% CI, -0.02-0.69), and evening PEFR decreased 12.1 l/min (95% CI, -1.8-22.3). These associations were greatly enhanced by examining certain fungal types (e.g., Alternaria, basidiospores, and hyphal fragments) and stratifying on 16 asthmatics allergic to tested deuteromycete fungi. There were no significant associations to low levels of pollen or O3, but inhaler use was associated with PM10 (0.15 inhaler puffs/10 micrograms/m3; p < 0.02). These findings suggest that exposure to fungal spores can adversely effect the daily respiratory status of some asthmatics.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Allergy Clin Immunol. 1971 Aug;48(2):96-114 - PubMed
    1. Am Rev Respir Dis. 1963 Nov;88:644-51 - PubMed
    1. Respiration. 1981;42(1):52-60 - PubMed
    1. Clin Allergy. 1981 Nov;11(6):611-20 - PubMed
    1. Am Rev Respir Dis. 1982 Nov;126(5):825-8 - PubMed

Publication types