Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Aug;17(8):833-45.
doi: 10.1097/00004647-199708000-00002.

In vivo kinetics of [18F](N-methyl)benperidol: a novel PET tracer for assessment of dopaminergic D2-like receptor binding

Affiliations

In vivo kinetics of [18F](N-methyl)benperidol: a novel PET tracer for assessment of dopaminergic D2-like receptor binding

S M Moerlein et al. J Cereb Blood Flow Metab. 1997 Aug.

Abstract

A novel D2-like receptor-binding radioligand, [18F](N-methyl)benperidol ([18F]NMB), was evaluated via positron emission tomographic (PET) imaging studies of baboons. [18F]NMB rapidly localized in vivo within dopaminergic receptor-rich cerebral tissues, and striatum-to-cerebellum ratios as high as 35 were achieved after 3 hours. Pretreatment of an animal with unlabeled receptor-specific antagonists before injection of [18F]NMB confirmed that the radioligand bound specifically to central D2-like receptors in vivo, and not to S2- or D1-like receptors. Unlabeled eticlopride displaced striatal [18F]NMB in vivo, showing that D2-like binding is reversible. Receptor-binding by the radioligand was resistant to competitive displacement by synaptic dopamine, as illustrated by the lack of effect of intravenous d-amphetamine on the in vivo localization of [18F]NMB. Studies involving sequential intravenous administration of [18F]NMB, d-amphetamine, and eticlopride show that the radioligand does not undergo agonist-mediated internalization with subsequent trapping. The feasibility of applying a three-compartment non-steady state model for quantification of [18F]NMB receptor binding was demonstrated. These in vivo characteristics give [18F]NMB distinct advantages over the PET radiopharmaceuticals currently used for clinical investigation of D2-like receptor binding.

PubMed Disclaimer

Publication types

LinkOut - more resources