Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Sep 15;100(6):1507-12.
doi: 10.1172/JCI119673.

Tissue- and development-specific expression of multiple alternatively spliced transcripts of rat neuronal nitric oxide synthase

Affiliations

Tissue- and development-specific expression of multiple alternatively spliced transcripts of rat neuronal nitric oxide synthase

M A Lee et al. J Clin Invest. .

Abstract

Nitric oxide (NO) functions as an intercellular messenger and mediates numerous biological functions. Among the three isoforms of NO synthase that produce NO, the ubiquitously expressed neuronal NO synthase (nNOS) is responsible for a large part of NO production, yet its regulation is poorly understood. Recent reports of two alternative spliceforms of nNOS in the mouse and in man have raised the possibility of spatial and temporal modulation of expression. This study demonstrates the existence of at least three transcripts of the rat nNOS gene designated nNOSa, nNOSb, and nNOSc, respectively, with distinct 5' untranslated first exons that arise from alternative splicing to a common second exon. Expression of the alternative transcripts occurs with a high degree of tissue and developmental specificity, as demonstrated by RNase protection assays on multiple tissues from both fetal and adult rats. Furthermore, terminal differentiation of rat pheochromocytoma-derived PC12 cells into neurons is associated with induction of nNOSa, suggesting, likewise, development- and tissue-specific transcriptional control of nNOS isoform expression. Physical mapping using a rat yeast artificial chromosome clone shows that the alternatively spliced first exons 1a, 1b, and 1c are separated by at least 15-60 kb from the downstream coding sequence, with exons 1b and 1c being positioned within 200 bp of each other. These findings provide evidence that the biological activity of nNOS is tightly and specifically regulated by a complex pattern of alternative splicing, indicating that the notion of constitutive expression of this isoform needs to be revised.

PubMed Disclaimer

References

    1. Nucleic Acids Res. 1983 Mar 25;11(6):1759-71 - PubMed
    1. Cell. 1993 Dec 31;75(7):1273-86 - PubMed
    1. Annu Rev Genet. 1990;24:519-41 - PubMed
    1. Nature. 1991 Jun 27;351(6329):714-8 - PubMed
    1. Science. 1992 Apr 10;256(5054):225-8 - PubMed

Publication types

Associated data