Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Aug 1;764(1-2):173-8.
doi: 10.1016/s0006-8993(97)00455-1.

Progesterone, 5alpha-pregnane-3,20-dione and 3alpha-hydroxy-5alpha-pregnane-20-one in specific regions of the human female brain in different endocrine states

Affiliations

Progesterone, 5alpha-pregnane-3,20-dione and 3alpha-hydroxy-5alpha-pregnane-20-one in specific regions of the human female brain in different endocrine states

M Bixo et al. Brain Res. .

Abstract

Post-mortem concentrations of progesterone, 5alpha-pregnane-3,20-dione (5alpha-DHP) and 3alpha-hydroxy-5alpha-pregnane-20-one (allopregnanolone) were measured in 17 brain areas and serum in five fertile and five postmenopausal women. Steroid concentrations were measured with radioimmunoassay after extraction of brain tissue with ethanol and purification with celite chromatography. There were regional differences in brain concentrations of all three steroids. The highest progesterone levels were noted in the amygdala, cerebellum and hypothalamus and the highest levels of 5alpha-DHP and allopregnanolone were seen in the substantia nigra and basal hypothalamus. Brain concentrations of all three steroids were significantly higher in the fertile women in luteal phase compared to their postmenopausal controls (P < 0.01). In general, the study showed that there is a variation in brain concentrations depending on ovarian steroid production, indicating that the secretion pattern during the menstrual cycle is reflected in the brain. However, regional differences in brain steroid levels imply local mechanisms for steroid uptake and binding as well. Investigations of gonadal steroid distributions in the human brain might be of importance considering the actions of these steroids in the central nervous system. Such studies could provide information about physiological mechanisms, such as the ovulation, and also form a baseline for comparative studies of normal and pathological conditions involving steroids, for instance, catamenial epilepsy and the premenstrual tension syndrome.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources