Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Sep 1;154(1):139-44.
doi: 10.1111/j.1574-6968.1997.tb12635.x.

Histidine 109 in peptidyl-prolyl cis-trans isomerase of Bacillus subtilis plays an important role in catalysis and in cyclosporin A binding

Affiliations

Histidine 109 in peptidyl-prolyl cis-trans isomerase of Bacillus subtilis plays an important role in catalysis and in cyclosporin A binding

T V Achenbach et al. FEMS Microbiol Lett. .

Abstract

The cyclophilin of Bacillus subtilis has a moderate affinity to cyclosporin A (IC50: 120 nM) and low catalytic activity (Kcat/ Km: 1.1 microM-1 s-1) when compared to other ubiquitous peptidyl-prolyl cis-trans isomerases (PPIases). The active site residues V52, H90 and H109, which are not conserved within other peptidyl-prolyl cis-trans isomerases, were found to play an important role in cyclosporin A binding and catalytic activity. In this work we report on double mutations of these residues, which greatly improved cyclosporin A affinity and catalytic activity. The H90N/H109W mutation displayed an IC50 value of 46 nM whereas the V52M/H109F mutation exhibited over 18-fold higher catalytic activity than that detected for wild-type PPIase. The mutations H109W and H109F of the B. subtilis PPIase showed no change in cyclosporin A affinity and catalytic activity between pH 6 and 8. In contrast, wild-type PPIase (H109) showed up to 10-fold reduction below pH 7.5, both in cyclosporin A affinity and in catalytic activity. These findings clearly underline the importance of the unique H109 residue in the B. subtilis enzyme.

PubMed Disclaimer

Publication types

MeSH terms

Associated data

LinkOut - more resources