Bovine and human alpha-crystallins as molecular chaperones: prevention of the inactivation of glutathione reductase by fructation
- PMID: 9301487
- DOI: 10.1006/exer.1997.0299
Bovine and human alpha-crystallins as molecular chaperones: prevention of the inactivation of glutathione reductase by fructation
Abstract
With no measurable protein synthesis occurring in the centre of the lens, structural proteins and enzymes there will need to be stable for many years, if not decades, in order to maintain lens integrity and function. Recent work has indicated that alpha-crystallin, which is sequentially related to heat shock proteins, has chaperone-like properties in that it is capable of preventing heat-induced aggregation of various proteins, including other crystallins. Thus this universal vertebrate lens protein may contribute to maintenance of lens integrity by protecting other lens proteins from non-enzymic insults or the consequences thereof. We previously showed that the enzyme glutathione reductase was inactivated in a time-dependent manner when incubated with various sugars, suggesting glycation was responsible for this effect. In this paper we confirmed that this was the case. Using this enzyme model system, the inclusion of either bovine or human alpha-crystallin protected against the inactivation of glutathione reductase by fructation. This action was specific, with control proteins displaying no such protection. Use of high performance liquid chromatography supported the fact that alpha-crystallin did not act simply by mopping up free sugar but rather maintained the activity of the modified enzyme. Dose-dependent experiments indicated that human alpha-crystallin was more effective than its bovine counterpart, which might be expected considering the much longer lifespan of humans. The stoichiometry of the protection by both alpha-crystallins indicated that alpha-crystallin with glutathione reductase was not acting like GroEL as a large complex with a hydrophobic pore, but rather that individual subunits may be capable of acting as chaperones.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
