Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1997 Sep 8;385(4):565-98.
doi: 10.1002/(sici)1096-9861(19970908)385:4<565::aid-cne5>3.0.co;2-1.

A Golgi study of the short-axon interneurons of the cell layer and inner plexiform layer of the medial cortex of the lizard Podarcis hispanica

Affiliations
Review

A Golgi study of the short-axon interneurons of the cell layer and inner plexiform layer of the medial cortex of the lizard Podarcis hispanica

J A Luis de la Iglesia et al. J Comp Neurol. .

Abstract

The medial cortex of lizards is a three-layered brain region displaying cyto- and chemoarchitectonical, connectional, and ontogenetic characteristics that relate it to the hippocampal fascia dentata of mammals. Three interneuron types located in the cell layer and ten others in the inner plexiform layer (six in the juxtasomatic zone and four in the deep zone) are described in this study. The granuloid neurons, web-axon neurons, and deep-fusiform neurons lay within the cell layer. These neurons were scarce; they were probably gamma-aminobutyric acid (GABA)-, and parvalbumin-immunoreactive and presumably participated in feed forward as well as in feed back inhibition of the principal projection cells of the lizard medial cortex. In the juxtasomatic inner plexiform layer, the smooth vertical neurons, smooth horizontal neurons, small radial neurons, large radial neurons, pyramidal-like radial neurons, and spheroidal neurons were found. They were all probably GABA-, and parvalbumin-immunoreactive and were involved in feed forward inhibition of principal medial cortex cells. In the deep inner plexiform layer lay the giant-multipolar neurons, long-spined polymorphic neurons, periventricular neurons, and alveus-horizontal neurons. These neurons were probably GABA-immunoreactive and either neuropeptide- (somatostatin-neuropeptide Y) or parvalbumin-immunoreactive. They seemed to be involved in feed back or even occasionally in feed forward inhibition phenomena.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources