Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1997 Sep;4(5):504-8.
doi: 10.1128/cdli.4.5.504-508.1997.

Comparison of two different methods for inactivation of viruses in serum

Affiliations
Comparative Study

Comparison of two different methods for inactivation of viruses in serum

T Preuss et al. Clin Diagn Lab Immunol. 1997 Sep.

Abstract

In order to compare protocols for inactivation of viruses potentially present in biological specimens, three different model viruses were treated in bovine serum by two different inactivation methods: samples were subjected either to chemical inactivation with ethylenimine (El) at concentrations of 5 and 10 mM at 37 degrees C for periods up to 72 h or to electron-beam irradiation in frozen and liquid form with doses varying between 11 and 46 kGy. The chemical inactivation resulted in nonlinear tailing curves in a semilogarithmic plot of virus titer versus inactivation time showing non-first-order kinetics with respect to virus titer. The time for inactivation of 7 log10 units of porcine parvovirus (PPV) was about 24 h for both El concentrations, whereas 5 log10 units of bovine viral diarrhea virus (BVDV) was inactivated in 2 h for both El concentrations and 6 log10 units of porcine enterovirus (PEV) was inactivated within 3 h. The inactivation with electron-beam irradiation resulted in almost linear curves in a semilogarithmic plot of virus titer versus irradiation dose, reflecting a first-order inactivation. The rate of inactivation was almost twice as fast in the liquid samples compared to the rate in frozen ones, giving values of the doses needed to reduce virus infectivity 1 log10 unit for inactivation of PPV of 11.8 and 7.7 kGy for frozen and liquid samples, respectively, whereas the corresponding values for BVDV were 4.9 and 2.5 kGy, respectively, and those for PEV were 6.4 and 4.4 kGy, respectively. The nonlinear inactivation with El makes it impossible to extrapolate the curves beyond the virus detection limit and thereby predict the necessary time for complete inactivation, i.e., to a level beyond the detection limit, of virus in a given sample. The first-order inactivation obtained with electron-beam irradiation makes such a prediction possible and justifiable. The two methods are discussed with respect to their different kinetics and applicability under different circumstances and criteria for inactivation, and considerations for choice of method are discussed.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Zentralbl Bakteriol Orig. 1970 Apr;213(3):285-97 - PubMed
    1. J Clin Microbiol. 1978 Nov;8(5):604-11 - PubMed
    1. Can J Microbiol. 1990 Oct;36(10):737-40 - PubMed
    1. J Pharm Biomed Anal. 1987;5(1):65-70 - PubMed
    1. Clin Diagn Lab Immunol. 1996 Nov;3(6):628-34 - PubMed

Publication types

LinkOut - more resources