Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Sep;45(3):322-31.
doi: 10.1007/pl00006236.

Domain evolution in the alpha-amylase family

Affiliations

Domain evolution in the alpha-amylase family

S Janecek et al. J Mol Evol. 1997 Sep.

Abstract

The available amino acid sequences of the alpha-amylase family (glycosyl hydrolase family 13) were searched to identify their domain B, a distinct domain that protrudes from the regular catalytic (beta/alpha)8-barrel between the strand beta3 and the helix alpha3. The isolated domain B sequences were inspected visually and also analyzed by Hydrophobic Cluster Analysis (HCA) to find common features. Sequence analyses and inspection of the few available three-dimensional structures suggest that the secondary structure of domain B varies with the enzyme specificity. Domain B in these different forms, however, may still have evolved from a common ancestor. The largest number of different specificities was found in the group with structural similarity to domain B from Bacillus cereus oligo-1,6-glucosidase that contains an alpha-helix succeeded by a three-stranded antiparallel beta-sheet. These enzymes are alpha-glucosidase, cyclomaltodextrinase, dextran glucosidase, trehalose-6-phosphate hydrolase, neopullulanase, and a few alpha-amylases. Domain B of this type was observed also in some mammalian proteins involved in the transport of amino acids. These proteins show remarkable similarity with (beta/alpha)8-barrel elements throughout the entire sequence of enzymes from the oligo-1, 6-glucosidase group. The transport proteins, in turn, resemble the animal 4F2 heavy-chain cell surface antigens, for which the sequences either lack domain B or contain only parts thereof. The similarities are compiled to indicate a possible route of domain evolution in the alpha-amylase family.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources