Vergence eye movements in response to binocular disparity without depth perception
- PMID: 9305842
- DOI: 10.1038/38496
Vergence eye movements in response to binocular disparity without depth perception
Abstract
Primates use vergence eye movements to align their two eyes on the same object and can correct misalignments by sensing the difference in the positions of the two retinal images of the object (binocular disparity). When large random-dot patterns are viewed dichoptically and small binocular misalignments are suddenly imposed (disparity steps), corrective vergence eye movements are elicited at ultrashort latencies. Here we show that the same steps applied to dense anticorrelated patterns, in which each black dot in one eye is matched to a white dot in the other eye, initiate vergence responses that are very similar, except that they are in the opposite direction. This sensitivity to the disparity of anticorrelated patterns is shared by many disparity-selective neurons in cortical area V1, despite the fact that human subjects fail to perceive depth in such stimuli. These data indicate that the vergence eye movements initiated at ultrashort latencies result solely from locally matched binocular features, and derive their visual input from an early stage of cortical processing before the level at which depth percepts are elaborated.
Comment in
-
Binocular vision. Seeing in reverse.Nature. 1997 Sep 18;389(6648):235, 237. doi: 10.1038/38400. Nature. 1997. PMID: 9305834 No abstract available.
Similar articles
-
Responses of primary visual cortical neurons to binocular disparity without depth perception.Nature. 1997 Sep 18;389(6648):280-3. doi: 10.1038/38487. Nature. 1997. PMID: 9305841
-
Capture of visual direction in dynamic vergence is reduced with flashed monocular lines.Vision Res. 2006 Aug;46(16):2608-14. doi: 10.1016/j.visres.2006.01.023. Epub 2006 Mar 10. Vision Res. 2006. PMID: 16530245
-
A specialization for relative disparity in V2.Nat Neurosci. 2002 May;5(5):472-8. doi: 10.1038/nn837. Nat Neurosci. 2002. PMID: 11967544
-
Binocular eye movements and the perception of depth.Rev Oculomot Res. 1990;4:213-61. Rev Oculomot Res. 1990. PMID: 7492529 Review. No abstract available.
-
How does binocular rivalry emerge from cortical mechanisms of 3-D vision?Vision Res. 2008 Sep;48(21):2232-50. doi: 10.1016/j.visres.2008.06.024. Epub 2008 Aug 13. Vision Res. 2008. PMID: 18640145 Review.
Cited by
-
Binocular combination of phase and contrast explained by a gain-control and gain-enhancement model.J Vis. 2013 Feb 8;13(2):13. doi: 10.1167/13.2.13. J Vis. 2013. PMID: 23397038 Free PMC article.
-
Deficits in short-latency tracking eye movements after chemical lesions in monkey cortical areas MT and MST.J Neurosci. 2007 Jan 17;27(3):529-41. doi: 10.1523/JNEUROSCI.3455-06.2007. J Neurosci. 2007. PMID: 17234585 Free PMC article.
-
Weighted summation and contrast normalization account for short-latency disparity vergence responses to white noise stimuli in humans.J Vis. 2022 Nov 1;22(12):17. doi: 10.1167/jov.22.12.17. J Vis. 2022. PMID: 36413359 Free PMC article.
-
Assessment of autostereoscopic perception using artificial intelligence-enhanced face tracking technology.PLoS One. 2024 Oct 17;19(10):e0312153. doi: 10.1371/journal.pone.0312153. eCollection 2024. PLoS One. 2024. PMID: 39418283 Free PMC article.
-
Rejection of false matches for binocular correspondence in macaque visual cortical area V4.J Neurosci. 2004 Sep 15;24(37):8170-80. doi: 10.1523/JNEUROSCI.5292-03.2004. J Neurosci. 2004. PMID: 15371518 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical