Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1997 Sep;42(3):326-34.
doi: 10.1002/ana.410420309.

Increased 3-nitrotyrosine and oxidative damage in mice with a human copper/zinc superoxide dismutase mutation

Affiliations
Comparative Study

Increased 3-nitrotyrosine and oxidative damage in mice with a human copper/zinc superoxide dismutase mutation

R J Ferrante et al. Ann Neurol. 1997 Sep.

Abstract

Mutations in copper/zinc superoxide dismutase (SOD1) cause a subset of cases of autosomal dominant familial amyotrophic lateral sclerosis (FALS). Transgenic mice that express these point mutations develop progressive paralysis and motor neuron loss thought to be caused by a gain-of-function of the enzyme. The gain-of-function may be an enhanced ability of the mutant SOD1 to generate .OH radicals or to facilitate peroxynitrite-mediated nitration of proteins. We found significant increases in concentrations of 3-nitrotyrosine, a marker of peroxynitrite-mediated nitration, in upper and lower spinal cord and in cerebral cortex of transgenic mice with the FALS-associated G93A mutation. Malondialdehyde, a marker of lipid peroxidation, was increased in cerebral cortex. 3-Nitrotyrosine-, heme oxygenase-1-, and malondialdehyde-modified protein immunoreactivities were increased throughout SOD1 transgenic mice spinal cord but particularly within motor neurons. These results suggest that the gain-of-function of at least one mutant SOD1 associated with FALS involves increased protein nitration and oxidative damage, which may play a role in neuronal degeneration.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources