Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Sep 15;57(18):3963-71.

Alpha particles initiate biological production of superoxide anions and hydrogen peroxide in human cells

Affiliations
  • PMID: 9307280

Alpha particles initiate biological production of superoxide anions and hydrogen peroxide in human cells

P K Narayanan et al. Cancer Res. .

Abstract

The mechanism(s) by which high-linear energy transfer a particles, like those emitted by inhaled radon and radon daughters, cause lung cancer has not been elucidated. Conceivably, DNA damage that is induced by a particles may be mediated by the metabolic generation of reactive oxygen species (ROS), in addition to direct a particle-DNA interactions and hydroxyl radical-DNA interactions. Using normal human lung fibroblasts, we investigated the hypothesis that densely ionizing alpha particles may induce the intracellular generation of superoxide (O2.-) and hydrogen peroxide (H2O2). Ethidium bromide and 2',7'-dichlorofluorescein, fluorescent products of the membrane-permeable dyes hydroethidine and 2',7'-dichlorofluorescin diacetate, respectively, were used to monitor the intracellular production of O2.- and H2O2, respectively, by flow cytometry. Compared to sham-irradiated cells, fibroblasts that were exposed to alpha particles (0.4-19 cGy) had significant increases in intracellular O2.- production, along with concomitant increases in H2O2 production. Further analyses suggest that the plasma membrane-bound NADPH-oxidase is primarily responsible for this increased intracellular generation of ROS and that the ROS response does not require direct nuclear or cellular "hits" by the a particles. In this latter regard, we additionally report that unirradiated cells also show the ROS response when they are incubated with serum-containing culture medium that has been exposed to a particles or when they are incubated with supernatants from a-irradiated cells. Our overall results support the possibility that a particles, at least in part, may mediate their DNA-damaging effects indirectly via a ROS-related mechanism.

PubMed Disclaimer

Publication types