Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1997 Sep 15;159(2):161-8.
doi: 10.1007/s002329900279.

Burst kinetics of co-expressed Kir6.2/SUR1 clones: comparison of recombinant with native ATP-sensitive K+ channel behavior

Affiliations
Comparative Study

Burst kinetics of co-expressed Kir6.2/SUR1 clones: comparison of recombinant with native ATP-sensitive K+ channel behavior

A E Alekseev et al. J Membr Biol. .

Abstract

Co-expression of clones encoding Kir6.2, a K+ inward rectifier, and SUR1, a sulfonylurea receptor, reconstitutes elementary features of ATP-sensitive K+ (KATP) channels. However, the precise kinetic properties of Kir6.2/SUR1 clones remain unknown. Herein, intraburst kinetics of Kir6.2/SUR1 channel activity, heterologously co-expressed in COS cells, displayed mean closed times from 0.7 +/- 0.1 to 0.4 +/- 0.03 msec, and from 0.4 +/- 0.1 to 2.0 +/- 0.2 msec, and mean open times from 1.9 +/- 0.4 to 4.5 +/- 0.8 msec, and from 12.1 +/- 2.4 to 5.0 +/- 0.2 msec between -100 and -20 mV, and +20 to +80 mV, respectively. Burst duration for Kir6.2/SUR1 activity was 17. 9 +/- 1.8 msec with 5.6 +/- 1.5 closings per burst. Burst kinetics of the Kir6.2/SUR1 activity could be fitted by a four-state kinetic model defining transitions between one open and three closed states with forward and backward rate constants of 1905 +/- 77 and 322 +/- 27 sec-1 for intraburst, 61.8 +/- 6.6 and 23.9 +/- 5.8 sec-1 for interburst, 12.4 +/- 6.0 and 13.6 +/- 2.9 sec-1 for intercluster events, respectively. Intraburst kinetic properties of Kir6.2/SUR1 clones were essentially indistinguishable from pancreatic or cardiac KATP channel phenotypes, indicating that intraburst kinetics per se were insufficient to classify recombinant Kir6.2/SUR1 amongst native KATP channels. Yet, burst kinetic behavior of Kir6.2/SUR1 although similar to pancreatic, was different from that of cardiac KATP channels. Thus, expression of Kir6.2/SUR1 proteins away from the pancreatic micro-environment, confers the burst kinetic identity of pancreatic, but not cardiac KATP channels. This study reports the kinetic properties of Kir6.2/SUR1 clones which could serve in the further characterization of novel KATP channel clones.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources