Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Sep 15;159(2):169-78.
doi: 10.1007/s002329900280.

Kinetic analysis of Ca2+/K+ selectivity of an ion channel by single-binding-site models

Affiliations

Kinetic analysis of Ca2+/K+ selectivity of an ion channel by single-binding-site models

D Gradmann et al. J Membr Biol. .

Abstract

Current-voltage relationships of a cation channel in the tonoplast of Beta vulgaris, as recorded in solutions with different activities of Ca2+ and K+ (from Johannes & Sanders 1995, J. Membrane Biol. 146:211-224), have been reevaluated for Ca2+/K+ selectivity. Since conversion of reversal voltages to permeability ratios by constant field equations is expected to fail because different ions do not move independently through a channel, the data have been analyzed with kinetic channel models instead. Since recent structural information on K+ channels show one short and predominant constriction, selectivity models with only one binding site are assumed here to reflect this region kinetically. The rigid-pore model with a main binding site between two energy barriers (nine free parameters) had intrinsic problems to describe the observed current-saturation at large (negative) voltages. The alternative, dynamic-pore model uses a selectivity filter in which the binding site alternates its orientation (empty, or occupied by either Ca2+ or K+) between the cytoplasmic side and the luminal side within a fraction of the electrical distance and in a rate-limiting fashion. Fits with this model describe the data well. The fits yield about a 10% electrical distance of the selectivity filter, located about 5% more cytoplasmic than the electrical center. For K+ translocation, reorientation of the unoccupied binding site (with a preference of about 6:5 to face the lumenal side) is rate limiting. For Ca2+, the results show high affinity to the binding site and low translocation rates (<1% of the K+ translocation rate). With the fitted model Ca2+ entry through the open channel has been calculated for physiological conditions. The model predicts a unitary open channel current of about 100 fA which is insensitive to cytoplasmic Ca2+ concentrations (between 0.1 and 1 microM) and which shows little sensitivity to the voltage across the tonoplast.

PubMed Disclaimer

Publication types

LinkOut - more resources