Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Oct 3;272(40):24731-4.
doi: 10.1074/jbc.272.40.24731.

Induction of apoptosis by DPC4, a transcriptional factor regulated by transforming growth factor-beta through stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) signaling pathway

Affiliations
Free article

Induction of apoptosis by DPC4, a transcriptional factor regulated by transforming growth factor-beta through stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) signaling pathway

A Atfi et al. J Biol Chem. .
Free article

Abstract

Many of the actions of serine/threonine kinase receptors for the transforming growth factor-beta (TGFbeta) are mediated by DPC4, a human MAD-related protein identified as a tumor suppressor gene in pancreatic carcinoma. Overexpression of DPC4 is sufficient to induce the activation of gene expression and cell cycle arrest, characteristic of the TGFbeta response. The stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) is also one of the downstream targets required for TGFbeta-mediated signaling. Here we report that expression of the dominant-interfering mutant of various components of the SAPK/JNK cascade specifically blocked both TGFbeta and DPC4-induced gene expression. These dominant-interfering mutants also inhibited TGFbeta-stimulated DPC4 transcriptional activity. Moreover, we find that overexpression of DPC4 causes transfected cells to undergo the morphological changes typical of apoptosis. These findings define a mechanism whereby TGFbeta signals mediated by DPC4 and SAPK/JNK cascade are integrated in the nucleus to activate gene expression and identify a new cellular function for DPC4.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources