Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Oct;81(4):540-9.
doi: 10.1161/01.res.81.4.540.

Contribution of glycogen and exogenous glucose to glucose metabolism during ischemia in the hypertrophied rat heart

Affiliations
Free article

Contribution of glycogen and exogenous glucose to glucose metabolism during ischemia in the hypertrophied rat heart

B O Schönekess et al. Circ Res. 1997 Oct.
Free article

Abstract

Although hypertrophied hearts have increased rates of glycolysis under aerobic conditions, it is controversial as to whether glucose metabolism during ischemia is altered in the hypertrophied heart. Because endogenous glycogen stores are a key source of glucose during ischemia, we developed a protocol to label the glycogen pool in hearts with either [3H]glucose or [14C]glucose, allowing for direct measurement of both glycogen and exogenous glucose metabolism during ischemia. Cardiac hypertrophy was produced in rats by banding the abdominal aorta for an 8-week period. Isolated hearts from aortic-banded and sham-operated rats were initially perfused under substrate-free conditions to decrease glycogen content to 40% of the initial pool size. Resynthesis and radiolabeling of the glycogen pool with [3H]glucose or [14C]glucose were accomplished in working hearts by perfusion for a 60-minute period with 11 mmol/L [3H]glucose or [14C]glucose, 0.5 mmol/L lactate, 1.2 mmol/L palmitate, and 100 mumol/mL insulin. Although glycolytic rates during the aerobic perfusion were significantly greater in hypertrophied hearts compared with control hearts, glycolytic rates from exogenous glucose were not different during low-flow ischemia. The contribution of glucose from glycogen was also not different in hypertrophied hearts compared with control hearts during ischemia (1314 +/- 665 versus 776 +/- 310 nmol.min-1.g dry wt-1, respectively). Glucose oxidation rates decreased during ischemia but were not different between the two groups. However, in both hypertrophied and control hearts, the ratio of glucose oxidation to glycolysis was greater for glucose originating from glycogen than from exogenous glucose. Our data demonstrate that glycogen is a significant source of glucose during low-flow ischemia, but the data do not differ between hypertrophied and control hearts.

PubMed Disclaimer

Publication types

LinkOut - more resources