Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Sep;15(11):1347-56.
doi: 10.1038/sj.onc.1201280.

Repression of c-Myc responsive genes in cycling cells causes G1 arrest through reduction of cyclin E/CDK2 kinase activity

Affiliations

Repression of c-Myc responsive genes in cycling cells causes G1 arrest through reduction of cyclin E/CDK2 kinase activity

K Berns et al. Oncogene. 1997 Sep.

Abstract

The c-myc gene encodes a sequence-specific DNA binding protein involved in proliferation and oncogenesis. Activation of c-myc expression in quiescent cells is sufficient to mediate cell cycle entry, whereas inhibition of c-myc expression causes cycling cells to withdraw from the cell cycle. To search for components of the cell cycle machinery that are targets of c-Myc, we have made a mutant c-Myc protein, named MadMyc, that actively represses c-myc target genes. Expression of MadMyc in cycling NIH3T3 cells causes a significant accumulation of cells in G1. The MadMyc-induced G1 arrest is rescued by ectopic expression of cyclin E/CDK2 and cyclin D1/ CDK4, but not by Cdc25A, a known cell cycle target of c-Myc. The MadMyc G1 arrest does not require the presence of a functional retinoblastoma protein and is associated with a strong reduction in cyclin E/CDK2 kinase activity in arrested cells. MadMyc does not cause alterations in the expression levels of cyclin E, CDK2, p27kip1, cyclin D1 or CDK4 in G1-arrested cells. These data indicate that inhibition of c-Myc activity in exponentially growing cells leads to G1 arrest through loss of cyclin E-associated kinase activity.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources