Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997;200(Pt 5):897-908.
doi: 10.1242/jeb.200.5.897.

Effect of anaerobiosis on cysteine protease regulation during the embryonic-larval transition in

Effect of anaerobiosis on cysteine protease regulation during the embryonic-larval transition in

A Warner et al. J Exp Biol. 1997.

Abstract

Hydrated encysted embryos of the brine shrimp Artemia franciscana have the ability to withstand years in anaerobic sea water using metabolic strategies that enable them to inactivate all cell metabolic activities and then to resume development when placed in aerobic sea water. However, this unique characteristic of Artemia franciscana embryos is lost during a very short period, at the embryonic­larval transition period of development, coincident with the appearance of prenauplius larvae. Thus, while encysted embryos show complete inhibition of proteolysis over at least 4 years under anoxia, control of this activity, together with resistance to anoxia, is lost in newly hatched nauplius larvae after only a few days in anaerobic sea water. In contrast to encysted embryos, young larvae in anaerobic sea water produce large amounts of lactic acid, which reaches a concentration of nearly 50 mmol l-1 within 12 h of incubation. The accumulated lactic acid is believed to reduce the intracellular pH (pHi) to considerably less than 6.3, the value found in encysted embryos after 5 months in anaerobic sea water. We find that larvae, in contrast to embryos, lose cytoplasmic proteins at the rate of 4­5 ng h-1 larva-1 upon transfer to anaerobic sea water, while yolk proteins are not degraded in either embryos or larvae under anoxic conditions. The decline in cytoplasmic protein levels in anaerobic larvae may be due to activation of an endogenous cysteine protease (CP) as the pHi becomes acidic. Contributing to the apparent uncontrolled CP activity is a decrease in the level of cysteine protease inhibitor (CPI) activity during the embryonic­larval transition period, resulting in an increase in the CP/CPI ratio, from approximately 0.5 in embryos to greater than 1.0 in newly hatched larvae. Finally, data are presented to suggest that loss of the 26 kDa stress protein from embryos during the embryonic­larval transition may also contribute to the loss in resistance of young nauplius larvae of A. franciscana to anaerobic conditions.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources