Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1997 Oct;66(4 Suppl):1032S-1041S.
doi: 10.1093/ajcn/66.4.1032S.

Are deficits of arachidonic and docosahexaenoic acids responsible for the neural and vascular complications of preterm babies?

Affiliations
Review

Are deficits of arachidonic and docosahexaenoic acids responsible for the neural and vascular complications of preterm babies?

M A Crawford et al. Am J Clin Nutr. 1997 Oct.

Abstract

We review evidence suggesting that pre- or postnatal deficits of arachidonic acid (AA) and docosahexaenoic acid (DHA) together with underdeveloped antioxidant protection contribute to neurovisual developmental disorders and other complications of premature birth. These two synergistic deficits occur at a time when 70% of energy is focused on brain development and when the brain and blood vessels are growing at high speed. The types of essential fatty acids fed to preterm babies bear no relation to what the infant would have received had it remained a fetus. This failure to meet essential fatty acid requirements exacerbates the AA and DHA deficits seen at birth; furthermore, the immature superoxide defenses remain depressed until the expected date of delivery. Deficits of these systems, which are required for cell membranes, the endothelium, and neural tissue, could provide the biochemical prerequisite for the membrane disorders to which these babies are at high risk: intraventricular hemorrhage, periventricular leucomalacia, retinopathy of prematurity, and bronchopulmonary dysplasia. Although poor vascular development during fetal and neonatal life may be repaired, the structural and antioxidant deficits identified in preterm babies may impair blood vessel development with long-term consequences. The conclusion drawn from this review is that present parenteral and enteral lipid nutrition for preterm babies is flawed and could be pathogenic. Full-term milk composition is the basis for the design of preterm infant foods, but full-term milk is different from the placental product that is rich in AA and DHA. Preterm lipid nutrition should be revised to be more in line with placental lipid transfer to the fetus.

PubMed Disclaimer

MeSH terms

LinkOut - more resources