Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Oct;124(4):433-46.
doi: 10.1016/s0002-9394(14)70860-8.

Vascular endothelial growth factor and severity of nonproliferative diabetic retinopathy mediate retinal hemodynamics in vivo: a potential role for vascular endothelial growth factor in the progression of nonproliferative diabetic retinopathy

Affiliations

Vascular endothelial growth factor and severity of nonproliferative diabetic retinopathy mediate retinal hemodynamics in vivo: a potential role for vascular endothelial growth factor in the progression of nonproliferative diabetic retinopathy

A C Clermont et al. Am J Ophthalmol. 1997 Oct.

Abstract

Purpose: To determine the effect of vascular endothelial growth factor and retinopathy level on retinal hemodynamics in nondiabetic and diabetic rats and to evaluate retinal hemodynamics in nondiabetic and diabetic patients.

Methods: Forty-eight diabetic and 22 nondiabetic patients had their diabetic retinopathy levels determined from fundus photographs according to Early Treatment Diabetic Retinopathy Study (ETDRS). Fluorescein angiograms were recorded from the left eye by video fluorescein angiography. Retinal blood flow was calculated from the digitized angiograms. Human recombinant vascular endothelial growth factor or vehicle alone was injected intravitreally into 13 nondiabetic and 11 diabetic rats.

Results: Retinal blood flow decreased 33% in patients with ETDRS retinopathy level 10 compared with control patients (P = .001) and increased sequentially in more advanced stages of retinopathy, with a strong correlation between retinal blood flow and retinopathy level (r2 = 0.434, P = .001). In the diabetic rats, retinal blood flow was decreased 35.6% (P = .01). Vascular endothelial growth factor maximally increased retinal blood flow by 36.1% in nondiabetic rats after 25 minutes (P = .001) and by 73.7% in diabetic rats after only 5 minutes (P = .01) and caused a greater response in diabetic than in nondiabetic rats.

Conclusions: Retinal blood flow increases with advancing nonproliferative diabetic retinopathy in humans, and diabetes accentuates the vascular endothelial growth factor-induced increase in retinal blood flow and venous dilation in rats. Vascular endothelial growth factor may contribute to the changes in retinal hemodynamics and morphology observed in early diabetic retinopathy.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources