Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1976 Jun;67(6):703-29.
doi: 10.1085/jgp.67.6.703.

Inactivation of monazomycin-induced voltage-dependent conductance in thin lipid membranes. I. Inactivation produced by long chain quaternary ammonium ions

Inactivation of monazomycin-induced voltage-dependent conductance in thin lipid membranes. I. Inactivation produced by long chain quaternary ammonium ions

E J Heyer et al. J Gen Physiol. 1976 Jun.

Abstract

The voltage-dependent conductance induced in thin lipid membranes by monazomycin undergoes inactivation upon the introduction of quaternary ammonium ions (QA) having a long alkyl chain (e.g. dodecyltrimethylammonium [C12]) to the side containing monazomycin. That is, in response to a step of voltage the conductance rises to a peak and then falls to a much lower steady-state value. We demonstrate that the basis of this phenomenon is the ability of QA to pass through the stimulated membrane and bind to the opposite surface. As a consequence, the surface potential on that side becomes more positive, thus reducing the voltage across the membrane proper and turning off the monazomycin-induced conductance. Because the flux of QA through the membrane increases linearly with conductance, we believe that these ions pass through the monazomycin channels. QA permeability increases with alkyl chain length; remarkably, in spite of its much larger size, C12 is about 150 times more permeant than K+. It appears, therefore, that there is a hydrophobic region of the cahnnel that favors the alkyl chain; we propose that this region is formed by the hydrophobic faces of the monazomycin channels in lipid bilayers to QA inactivation of potassium channels in the squid giant azon, and suggest that there may be a common structural feature for the two channels. It is possible that some of the inactivation phenomena in excitable cells may arise from local field changes not measurable by the recording electrodes.

PubMed Disclaimer

References

    1. J Physiol. 1952 Apr;116(4):497-506 - PubMed
    1. J Physiol. 1952 Apr;116(4):473-96 - PubMed
    1. J Gen Physiol. 1970 Jul;56(1):125-45 - PubMed
    1. J Gen Physiol. 1972 Apr;59(4):388-400 - PubMed
    1. J Supramol Struct. 1974;2(5-6):538-57 - PubMed

Publication types

MeSH terms