Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Oct 1;67(1):24-31.
doi: 10.1002/(sici)1097-4644(19971001)67:1<24::aid-jcb3>3.0.co;2-y.

Distinct roles for Sp1 and E2F sites in the growth/cell cycle regulation of the DHFR promoter

Affiliations

Distinct roles for Sp1 and E2F sites in the growth/cell cycle regulation of the DHFR promoter

D E Jensen et al. J Cell Biochem. .

Abstract

Dihydrofolate reductase activity is required for many biosynthetic pathways including nucleotide synthesis. Its expression is therefore central to cellular growth, and it has become a key target for cancer chemotherapy. Transcription of the dihydrofolate reductase gene is regulated with growth, being expressed maximally in late G1/early S phase following serum stimulation of quiescent cells. This regulation is directed by a promoter which contains binding sites for only the transcription factors Sp1 and E2F. In this study, the role of these promoter elements in growth/cell cycle regulation of dihydrofolate transcription was addressed directly by transient transfection of Balb/c 3T3 cells with mutant promoter-reporter gene constructs. The E2F sites were found to repress transcription in G0 and early G1 but did not contribute to the level of transcription in late G1/S phase. In contrast, Sp1 sites were able to mediate induction of transcription from the dihydrofolate reductase promoter, as well as a heterologous promoter, following serum stimulation of quiescent cells. These findings add dihydrofolate reductase to a growing list of genes at which E2F sites are primarily repressive elements and delineate a role for Sp1 sites in the growth/cell cycle regulation of transcription.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources