Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1997 Sep 16;36(37):11051-4.
doi: 10.1021/bi971383p.

Accumulating evidence suggests that several AB-toxins subvert the endoplasmic reticulum-associated protein degradation pathway to enter target cells

Affiliations
Review

Accumulating evidence suggests that several AB-toxins subvert the endoplasmic reticulum-associated protein degradation pathway to enter target cells

B Hazes et al. Biochemistry. .

Abstract

Several AB-toxins appear to have independently evolved mechanisms by which they undergo retrograde transport from the cell membrane to the endoplasmic reticulum (ER). Recent insights into ER-associated protein degradation (ERAD) now provide clues as to why these toxins have selected the ER as the site of cell entry. We propose that they disguise themselves as misfolded proteins to enter the ERAD pathway. We further link the observation that these toxins have few, if any, lysine residues to the need to escape ubiquitin-mediated protein degradation, the ultimate destination of the ERAD pathway. The actual membrane translocation step remains unclear, but studies on viral immune evasion mechanisms indicate that retrotranslocation across the ER lipid bilayer may involve SEC61. Understanding the internalization process of these toxins opens new avenues for preventing their entry into cells. In addition, this knowledge can be exploited to create protein-based pharmaceuticals that act on cytosolic targets.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources