Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Oct 17;272(42):26159-65.
doi: 10.1074/jbc.272.42.26159.

Appearance of phosphatidylserine on apoptotic cells requires calcium-mediated nonspecific flip-flop and is enhanced by loss of the aminophospholipid translocase

Affiliations
Free article

Appearance of phosphatidylserine on apoptotic cells requires calcium-mediated nonspecific flip-flop and is enhanced by loss of the aminophospholipid translocase

D L Bratton et al. J Biol Chem. .
Free article

Abstract

Phosphatidylserine (PS), ordinarily sequestered in the plasma membrane inner leaflet, appears in the outer leaflet during apoptosis, where it triggers non-inflammatory phagocytic recognition of the apoptotic cell. The mechanism of PS appearance during apoptosis is not well understood but has been associated with loss of aminophospholipid translocase activity and nonspecific flip-flop of phospholipids of various classes. The human leukemic cell line HL-60, the T cell line Jurkat, and peripheral blood neutrophils, undergoing apoptosis induced either with UV irradiation or anti-Fas antibody, were probed in the cytofluorograph for (i) surface PS using fluorescein isothiocyanate-labeled annexin V, (ii) PS uptake by the aminophospholipid translocase using [6-[(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino] caproyl] (NBD)-labeled PS, (iii) nonspecific uptake of phospholipids (as a measure of transbilayer flip-flop) using NBD-labeled phosphatidylcholine, and (iv) the appearance of hypodiploid DNA. In all three types of cells undergoing apoptosis, the appearance of PS followed loss of aminophospholipid translocase and was accompanied by nonspecific phospholipid flip-flop. Importantly, however, in the absence of extracellular calcium, the appearance of PS was completely inhibited despite DNA fragmentation and loss of aminophospholipid translocase activity, the latter demonstrating that loss of the translocase is insufficient for PS appearance during apoptosis. Furthermore, while both the appearance of PS and nonspecific phospholipid uptake demonstrated identical extracellular calcium requirements with an ED50 of nearly 100 microM, the magnitude of PS appearance depended on the level of aminophospholipid translocase activity. Taken together, the data strongly suggest that while nonspecific flip-flop is the driving event for PS appearance in the plasma membrane outer leaflet, aminophospholipid translocase activity ultimately modulates its appearance.

PubMed Disclaimer

Publication types

LinkOut - more resources