Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Jul-Aug;88(4):255-65.
doi: 10.1007/BF03404793.

Mathematical models of disease transmission: a precious tool for the study of sexually transmitted diseases

Affiliations

Mathematical models of disease transmission: a precious tool for the study of sexually transmitted diseases

M C Boily et al. Can J Public Health. 1997 Jul-Aug.

Abstract

This paper is an introduction to the mathematical epidemiology of sexually transmitted diseases (STDs) and its application to public health. After a brief introduction to transmission dynamics models, the construction of a deterministic compartmental mathematical model of HIV transmission in a population is described. As a background to STD transmission dynamics, basic reproductive rate, intergroup mixing, rate of partner change, and duration of infectivity are discussed. Use of the models illustrates the effect of sexual mixing (proportionate to highly assortative), of preventive intervention campaigns, and of HIV-chlamydia interaction on HIV prevalence in the different population groups. In particular, planned prevention campaigns can benefit the targeted intervention group but surprisingly can be disadvantageous for the general population. Through examples, mathematical models are shown to be helpful in our understanding of disease transmission, in interpretation of observed trends, in planning of prevention strategies, and in guiding data collection.

Cet article est une introduction à l’épidémi-ologie mathématique des maladies transmises sexuellement (MTS) et de ses applications à la santé publique. Les modèles de dynamique de transmission des MTS sont d’abord introduits de façon concise. À la section méthode, l’élaboration d’un modèle déterministe comparti-mental de transmission du VIH dans une population est illustrée. Certains concepts de base des modèles dynamiques tels le taux de reproduction de base, l’interaction intra groupes, le taux de changement de partenaires sexuels et la durée d’infectiosité sont discutés. L’impact des interactions sexuelles entre individus, des mesures préventives visant à modifier les comportements sexuels et de l’interaction entre les MTS classiques et le VIH est illustré. Plus particulièrement, il est démontré que les campagnes de prévention peuvent bénéficier au groupe directement ciblé par la campagne au détriment de la population générale. En résumé, cet article illustre, à l’aide d’exemples, l’utilité des modèles mathématiques permettant d’améliorer notre compréhension de la dynamique de transmission des MTS, notre interprétation des tendances temporelles observées et notre évaluation des stratégies de prévention; ceci permettant également de mieux cibler les données les plus utiles à recueillir lors d’études futures.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Anderson RM, May RM. Infectious Diseases of Humans: Dynamics and Control. Oxford: Oxford University Press; 1991.
    1. May RM. Stability and Complexity in Models Ecosystem. New-Jersey: Princeton University Press, second edition, 1973:265.
    1. Anderson RM. Populations and infectious diseases: Ecology or epidemiology? J Animal Ecol. 1991;60:1–50. doi: 10.2307/5443. - DOI
    1. Kingman JFC. SIAM. 1980. Mathematics of genetic diversity. CBMS-NFS regional conference series in applied mathematics; p. 34:70.
    1. Nokes DJ, Anderson RM. The use of mathematical models in the epidemiological study of infectious diseases and in the design of mass immunization programmes. Epidem Inf. 1988;101:1–20. doi: 10.1017/S0950268800029186. - DOI - PMC - PubMed