Mathematical models of disease transmission: a precious tool for the study of sexually transmitted diseases
- PMID: 9336095
- PMCID: PMC6990198
- DOI: 10.1007/BF03404793
Mathematical models of disease transmission: a precious tool for the study of sexually transmitted diseases
Abstract
This paper is an introduction to the mathematical epidemiology of sexually transmitted diseases (STDs) and its application to public health. After a brief introduction to transmission dynamics models, the construction of a deterministic compartmental mathematical model of HIV transmission in a population is described. As a background to STD transmission dynamics, basic reproductive rate, intergroup mixing, rate of partner change, and duration of infectivity are discussed. Use of the models illustrates the effect of sexual mixing (proportionate to highly assortative), of preventive intervention campaigns, and of HIV-chlamydia interaction on HIV prevalence in the different population groups. In particular, planned prevention campaigns can benefit the targeted intervention group but surprisingly can be disadvantageous for the general population. Through examples, mathematical models are shown to be helpful in our understanding of disease transmission, in interpretation of observed trends, in planning of prevention strategies, and in guiding data collection.
Cet article est une introduction à l’épidémi-ologie mathématique des maladies transmises sexuellement (MTS) et de ses applications à la santé publique. Les modèles de dynamique de transmission des MTS sont d’abord introduits de façon concise. À la section méthode, l’élaboration d’un modèle déterministe comparti-mental de transmission du VIH dans une population est illustrée. Certains concepts de base des modèles dynamiques tels le taux de reproduction de base, l’interaction intra groupes, le taux de changement de partenaires sexuels et la durée d’infectiosité sont discutés. L’impact des interactions sexuelles entre individus, des mesures préventives visant à modifier les comportements sexuels et de l’interaction entre les MTS classiques et le VIH est illustré. Plus particulièrement, il est démontré que les campagnes de prévention peuvent bénéficier au groupe directement ciblé par la campagne au détriment de la population générale. En résumé, cet article illustre, à l’aide d’exemples, l’utilité des modèles mathématiques permettant d’améliorer notre compréhension de la dynamique de transmission des MTS, notre interprétation des tendances temporelles observées et notre évaluation des stratégies de prévention; ceci permettant également de mieux cibler les données les plus utiles à recueillir lors d’études futures.
Similar articles
-
Estimating the effective rate of sex partner change from individuals with sexually transmitted diseases.Sex Transm Dis. 1994 Jul-Aug;21(4):226-30. doi: 10.1097/00007435-199407000-00009. Sex Transm Dis. 1994. PMID: 7974075
-
Chlamydia trachomatis, infertility, and population growth in sub-Saharan Africa.Sex Transm Dis. 1993 May-Jun;20(3):168-73. doi: 10.1097/00007435-199305000-00010. Sex Transm Dis. 1993. PMID: 8511712
-
The core group revisited: the effect of partner mixing and migration on the spread of gonorrhea, Chlamydia, and HIV.Math Biosci. 1994 Mar;120(1):1-23. doi: 10.1016/0025-5564(94)90036-1. Math Biosci. 1994. PMID: 8155907
-
From epidemiological synergy to public health policy and practice: the contribution of other sexually transmitted diseases to sexual transmission of HIV infection.Sex Transm Infect. 1999 Feb;75(1):3-17. doi: 10.1136/sti.75.1.3. Sex Transm Infect. 1999. PMID: 10448335 Free PMC article. Review.
-
Adolescents and sexually transmitted diseases.J Sch Health. 1992 Sep;62(7):331-8. doi: 10.1111/j.1746-1561.1992.tb01252.x. J Sch Health. 1992. PMID: 1434562 Review.
Cited by
-
Contribution of high risk groups' unmet needs may be underestimated in epidemic models without risk turnover: A mechanistic modelling analysis.Infect Dis Model. 2020 Aug 1;5:549-562. doi: 10.1016/j.idm.2020.07.004. eCollection 2020. Infect Dis Model. 2020. PMID: 32913937 Free PMC article.
-
Dynamics of non-cohabiting sex partnering in sub-Saharan Africa: a modelling study with implications for HIV transmission.Sex Transm Infect. 2015 Sep;91(6):451-7. doi: 10.1136/sextrans-2014-051925. Epub 2015 Mar 6. Sex Transm Infect. 2015. PMID: 25746040 Free PMC article.
-
The rise and fall of HIV in high-prevalence countries: a challenge for mathematical modeling.PLoS Comput Biol. 2014 Mar 13;10(3):e1003459. doi: 10.1371/journal.pcbi.1003459. eCollection 2014 Mar. PLoS Comput Biol. 2014. PMID: 24626088 Free PMC article. Review.
-
Genital herpes has played a more important role than any other sexually transmitted infection in driving HIV prevalence in Africa.PLoS One. 2008 May 21;3(5):e2230. doi: 10.1371/journal.pone.0002230. PLoS One. 2008. PMID: 18493617 Free PMC article.
-
Incident Chlamydia trachomatis Infection in a High School Population.Biology (Basel). 2022 Sep 17;11(9):1363. doi: 10.3390/biology11091363. Biology (Basel). 2022. PMID: 36138842 Free PMC article.
References
-
- Anderson RM, May RM. Infectious Diseases of Humans: Dynamics and Control. Oxford: Oxford University Press; 1991.
-
- May RM. Stability and Complexity in Models Ecosystem. New-Jersey: Princeton University Press, second edition, 1973:265.
-
- Anderson RM. Populations and infectious diseases: Ecology or epidemiology? J Animal Ecol. 1991;60:1–50. doi: 10.2307/5443. - DOI
-
- Kingman JFC. SIAM. 1980. Mathematics of genetic diversity. CBMS-NFS regional conference series in applied mathematics; p. 34:70.
MeSH terms
LinkOut - more resources
Full Text Sources
Medical
Research Materials