Liquid crystalline ordering of nucleosome core particles under macromolecular crowding conditions: evidence for a discotic columnar hexagonal phase
- PMID: 9336172
- PMCID: PMC1181077
- DOI: 10.1016/S0006-3495(97)78207-9
Liquid crystalline ordering of nucleosome core particles under macromolecular crowding conditions: evidence for a discotic columnar hexagonal phase
Abstract
Macromolecular crowding conditions occurring inside the cell nucleus were reproduced experimentally with solutions of mononucleosome core particles to study their supramolecular organization. We report here that under these conditions, and over a large range of monovalent salt concentrations, mononucleosome core particles self-assemble to form a discotic liquid crystalline phase characterized in polarizing and freeze-fracture electron microscopy. Mononucleosomes are stacked on each other to form columns, which are themselves closely packed into an hexagonal array. The nucleosome concentration, estimated from the network parameters, falls in the range of values measured in cell nuclei. We suggest that these concentrated solutions, although their organization cannot be immediately compared to the organization of chromatin in vivo, may be used to investigate the nucleosome-nucleosome interactions. Furthermore, this approach may be complexified to take into account the complexity of the eucaryotic chromatin.
Similar articles
-
Chiral discotic columnar germs of nucleosome core particles.Biophys J. 2000 May;78(5):2716-29. doi: 10.1016/S0006-3495(00)76816-0. Biophys J. 2000. PMID: 10777768 Free PMC article.
-
Spermidine-induced aggregation of nucleosome core particles: evidence for multiple liquid crystalline phases.J Mol Biol. 1999 Jul 9;290(2):481-94. doi: 10.1006/jmbi.1999.2895. J Mol Biol. 1999. PMID: 10390346
-
Are liquid crystalline properties of nucleosomes involved in chromosome structure and dynamics?Philos Trans A Math Phys Eng Sci. 2006 Oct 15;364(1847):2615-33. doi: 10.1098/rsta.2006.1843. Philos Trans A Math Phys Eng Sci. 2006. PMID: 16973479
-
Electron microscopy and atomic force microscopy studies of chromatin and metaphase chromosome structure.Micron. 2011 Dec;42(8):733-50. doi: 10.1016/j.micron.2011.05.002. Epub 2011 May 12. Micron. 2011. PMID: 21703860 Review.
-
Nucleosome and chromatin fiber dynamics.Curr Opin Struct Biol. 2005 Apr;15(2):188-96. doi: 10.1016/j.sbi.2005.03.006. Curr Opin Struct Biol. 2005. PMID: 15837178 Review.
Cited by
-
DNA length tunes the fluidity of DNA-based condensates.Biophys J. 2021 Apr 6;120(7):1288-1300. doi: 10.1016/j.bpj.2021.02.027. Epub 2021 Feb 26. Biophys J. 2021. PMID: 33640380 Free PMC article.
-
Bilayers of nucleosome core particles.Biophys J. 2001 Oct;81(4):2414-21. doi: 10.1016/S0006-3495(01)75888-2. Biophys J. 2001. PMID: 11566811 Free PMC article.
-
Dnmt1-independent CG methylation contributes to nucleosome positioning in diverse eukaryotes.Cell. 2014 Mar 13;156(6):1286-1297. doi: 10.1016/j.cell.2014.01.029. Cell. 2014. PMID: 24630728 Free PMC article.
-
Effect of capsid confinement on the chromatin organization of the SV40 minichromosome.Nucleic Acids Res. 2013 Feb 1;41(3):1569-80. doi: 10.1093/nar/gks1270. Epub 2012 Dec 20. Nucleic Acids Res. 2013. PMID: 23258701 Free PMC article.
-
Characterization of nucleosome sediments for protein interaction studies by solid-state NMR spectroscopy.Magn Reson (Gott). 2021;2(1):187-202. doi: 10.5194/mr-2-187-2021. Epub 2021 Apr 21. Magn Reson (Gott). 2021. PMID: 35647606 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources