Computation of molecular electrostatics with boundary element methods
- PMID: 9336178
- PMCID: PMC1181083
- DOI: 10.1016/S0006-3495(97)78213-4
Computation of molecular electrostatics with boundary element methods
Abstract
In continuum approaches to molecular electrostatics, the boundary element method (BEM) can provide accurate solutions to the Poisson-Boltzmann equation. However, the numerical aspects of this method pose significant problems. We describe our approach, applying an alpha shape-based method to generate a high-quality mesh, which represents the shape and topology of the molecule precisely. We also describe an analytical method for mapping points from the planar mesh to their exact locations on the surface of the molecule. We demonstrate that derivative boundary integral formulation has numerical advantages over the nonderivative formulation: the well-conditioned influence matrix can be maintained without deterioration of the condition number when the number of the mesh elements scales up. Singular integrand kernels are characteristics of the BEM. Their accurate integration is an important issue. We describe variable transformations that allow accurate numerical integration. The latter is the only plausible integral evaluation method when using curve-shaped boundary elements.
Similar articles
-
Numerical integration techniques for curved-element discretizations of molecule-solvent interfaces.J Chem Phys. 2007 Jul 7;127(1):014701. doi: 10.1063/1.2743423. J Chem Phys. 2007. PMID: 17627358 Free PMC article.
-
Accurate solution of multi-region continuum biomolecule electrostatic problems using the linearized Poisson-Boltzmann equation with curved boundary elements.J Comput Chem. 2009 Jan 15;30(1):132-53. doi: 10.1002/jcc.21027. J Comput Chem. 2009. PMID: 18567005 Free PMC article.
-
Computation of electrostatic forces between solvated molecules determined by the Poisson-Boltzmann equation using a boundary element method.J Chem Phys. 2005 Jun 1;122(21):214102. doi: 10.1063/1.1924448. J Chem Phys. 2005. PMID: 15974723
-
The Poisson-Boltzmann equation for biomolecular electrostatics: a tool for structural biology.J Mol Recognit. 2002 Nov-Dec;15(6):377-92. doi: 10.1002/jmr.577. J Mol Recognit. 2002. PMID: 12501158 Review.
-
Continuum molecular electrostatics, salt effects, and counterion binding--a review of the Poisson-Boltzmann theory and its modifications.Biopolymers. 2008 Feb;89(2):93-113. doi: 10.1002/bip.20877. Biopolymers. 2008. PMID: 17969016 Review.
Cited by
-
Numerical integration techniques for curved-element discretizations of molecule-solvent interfaces.J Chem Phys. 2007 Jul 7;127(1):014701. doi: 10.1063/1.2743423. J Chem Phys. 2007. PMID: 17627358 Free PMC article.
-
Exploring accurate Poisson-Boltzmann methods for biomolecular simulations.Comput Theor Chem. 2013 Nov 15;1024:34-44. doi: 10.1016/j.comptc.2013.09.021. Comput Theor Chem. 2013. PMID: 24443709 Free PMC article.
-
Hydration structure of antithrombin conformers and water transfer during reactive loop insertion.Biophys J. 1998 Aug;75(2):573-82. doi: 10.1016/S0006-3495(98)77548-4. Biophys J. 1998. PMID: 9675160 Free PMC article.
-
Applications of MMPBSA to Membrane Proteins I: Efficient Numerical Solutions of Periodic Poisson-Boltzmann Equation.J Chem Inf Model. 2015 Oct 26;55(10):2187-99. doi: 10.1021/acs.jcim.5b00341. Epub 2015 Oct 5. J Chem Inf Model. 2015. PMID: 26389966 Free PMC article.
-
A Continuum Poisson-Boltzmann Model for Membrane Channel Proteins.J Chem Theory Comput. 2017 Jul 11;13(7):3398-3412. doi: 10.1021/acs.jctc.7b00382. Epub 2017 Jun 14. J Chem Theory Comput. 2017. PMID: 28564540 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources