Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1997:29:75-90.

The DNA replication licensing system

Affiliations
  • PMID: 9338097
Review

The DNA replication licensing system

P Thömmes et al. Cancer Surv. 1997.

Abstract

The Xenopus cell free system has proved a good model system to study in vitro DNA replication and the mechanism preventing rereplication in a single cell cycle. Studies using this system resulted in the development of a model postulating the existence of a replication licensing factor (RLF), which binds to the chromatin before the G1-S transition of the cell cycle and is displaced during replication. The nuclear envelope prevents rebinding of RLF and hence relicensing. Nuclear envelope breakdown at mitosis is required to allow another round of replication. Protein kinase inhibitors block licensing factor activity and arrest Xenopus extracts in a G2 like state. These kinase inhibitors have allowed the development of an in vitro assay leading to the biochemical purification of RLF components. RLF can be separated into RLF-B and RLF-M, the latter consisting of several members of the MCM/P1 class of replication proteins. In Xenopus as well as in many other eukaryotes, the binding of MCM/P1 proteins to chromatin before S phase is essential for replication to occur. The proteins are then displaced as replication proceeds. These changes in subnuclear distribution are reflected by changes in the phosphorylation status. MCM/P1 proteins do not bind to the DNA on their own but need RLF-B to be loaded onto the chromatin. Their cycling behaviour is reminiscent of the existence of a prereplicative complex at the origins of replication in yeast, suggesting that the licensing mechanism is ubiquitous in eukaryotes.

PubMed Disclaimer

Similar articles

Cited by