Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Mar;2(1):55-62.
doi: 10.1006/nimg.1995.1008.

Autoradiographic evidence that QNB displays in vivo selectivity for the m2 subtype

Affiliations

Autoradiographic evidence that QNB displays in vivo selectivity for the m2 subtype

R C McRee et al. Neuroimage. 1995 Mar.

Abstract

Alzheimer's disease (AD) involves selective loss of muscarinic m2, but not m1, subtype neuroreceptors in cortical and hippocampal regions of the human brain. Emission tomographic study of the loss of m2 receptors in AD is limited by the fact that there is currently no available m2-selective radioligand which can penetrate the blood-brain barrier. We have previously reported the results of in vivo dissection studies, using both carrier-free and low specific activity [3H]QNB, which show that [3H]QNB exhibits a substantial in vivo m2 selectivity. Because of the expense of the radioligand and the long exposure time required for the X-ray film, performing a large number of direct in vivo autoradiographic studies using [3H]QNB is precluded. Therefore, we now confirm these results autoradiographically by studying the in vivo inhibition of radio-iodinated (R)-3-quinuclidinyl (S)-4-iodobenzilate ((R,S)-[125I]IQNB) binding by unlabeled QNB. In the absence of QNB, (R,S)-[125I]IQNB labels brain regions in proportion to the total muscarinic receptor concentration; in the presence of 15 nmol QNB, (R,S,)-[125I]IQNB labeling in those brain regions containing predominantly m2 subtype is reduced to background levels. We conclude that QNB is m2-selective in vivo and that a suitably radiolabeled derivative of QNB, possibly labeled with 18F, may be of potential use in positron emission tomographic study of the loss of m2 receptors in AD.

PubMed Disclaimer

Publication types

LinkOut - more resources