Increased activity and fidelity of DNA polymerase beta on single-nucleotide gapped DNA
- PMID: 9346877
- DOI: 10.1074/jbc.272.44.27501
Increased activity and fidelity of DNA polymerase beta on single-nucleotide gapped DNA
Abstract
DNA polymerase beta (pol beta) is an error-prone polymerase that plays a central role in mammalian base excision repair. To better characterize the mechanisms governing rat pol beta activity, we examined polymerization on synthetic primer-templates of different structure. Steady-state kinetic analyses revealed that the catalytic efficiency of pol beta (kcat/Km,dNTPapp) is strongly influenced by gap size and the presence of a phosphate group at the 5'-margin of the gap. pol beta exhibited the highest catalytic efficiency on 5'-phosphorylated 1-nucleotide gapped DNA. This efficiency was >/=500 times higher than on non-phosphorylated 1-nucleotide and 6-nucleotide (with or without PO4) gapped DNAs and 2,500 times higher than on primer-template with no gaps. The nucleotide insertion fidelity of pol beta, as judged by its ability to form G-N mispairs, was also higher (10-100 times) on 5'-phosphorylated single-nucleotide gapped DNA compared with the other DNA substrates studied. These data suggest that a primary function of mammalian pol beta is to fill 5'-phosphorylated 1-nucleotide gaps.
Publication types
MeSH terms
Substances
Associated data
- Actions
LinkOut - more resources
Full Text Sources
Miscellaneous