Ligand binding pocket of the human somatostatin receptor 5: mutational analysis of the extracellular domains
- PMID: 9351971
- DOI: 10.1124/mol.52.5.807
Ligand binding pocket of the human somatostatin receptor 5: mutational analysis of the extracellular domains
Abstract
The ligand binding domain of G protein-coupled receptors for peptide ligands consists of a pocket formed by extracellular and transmembrane domain (TM) residues. In the case of somatostatin (SRIF), however, previous studies have suggested that the binding cavity of the octapeptide analog SMS201-995 (SMS) is lined by residues in TMs III-VII. The additional involvement of the extracellular domains for binding SMS or the natural SRIF ligands (SRIF-14, SRIF-28) has not been clarified. Using a cassette construct cDNA for the human somatostatin 5 receptor (sst5R), we systematically examined the role of exofacial structures in ligand binding by creating a series of mutants in which the extracellular portions have been altered by conservative segment exchange (CSE) mutagenesis for the extracellular loops (ECLs) and by deletion (for the NH2-terminal segment) or truncation analysis (ECL3). CHO-K1 cells were stably transfected with wild type or mutant human sst5R constructs, and agonist binding was assessed using membrane binding assays with 125I-LTT SRIF-28 ligand. Deletion of the NH2 terminus or CSE mutagenesis of ECL1 and ECL3 produced minor 2-8-fold decreases in affinity for SRIF-14, SRIF-28, and SMS ligands. Truncation of ECL3 to mimic the size of this loop in sst1R and sst4R (the two subtypes that do not bind SMS) did not interfere with the binding of SMS, SRIF-14, or SRIF-28. In contrast, both ECL2 mutants failed to bind 125I-LTT SRIF-28. Immunocytochemical analysis of nonpermeabilized cells with a human sst5R antibody revealed that the mutant receptors were targeted to the plasma membrane. Labeled SMS (125I-Tyr3 SMS) also failed to bind to the mutant ECL2 receptors. These results suggest a potential contribution of ECL2 (in addition to the previously identified residues in TMs III-VII) to the SRIF ligand binding pocket.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources