Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997;26(5):349-57.
doi: 10.1007/s002490050089.

A scanning force- and fluorescence light microscopy study of the structure and function of a model pulmonary surfactant

Affiliations

A scanning force- and fluorescence light microscopy study of the structure and function of a model pulmonary surfactant

M Amrein et al. Eur Biophys J. 1997.

Abstract

The structure of an artificial pulmonary surfactant was studied by scanning force- and fluorescence light microscopy (SFM, and FLM, respectively). The surfactant--a mixture of dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylglycerol (DPPG) and recombinant surfactant-associated protein C (SP-C)--was prepared at the air-water interface of a Langmuir film balance and imaged by FLM under various states of compression. In order to visualize their topography by SFM, the films were transferred onto a solid mica support by the Langmuir-Blodgett (LB) technique. We found that a region of high film compressibility of the spread monolayer close to its equilibrium surface pressure (pi = 50 mN/m) was due to the exclusion of layered protrusions with each layer 5.5 to 6.5 nm thick. They remained associated with the monolayer and readily reinserted upon expansion of the film. Comparison with the FLM showed that the protrusions contained the protein in high concentration. The more the film was compressed, the larger was the number of layers on top of each other. The protrusions arose from regions of the monolayer with a distinct microstructure that may have been responsible for their formation. The molecular architecture of the microstructure remains to be elucidated, although some of it can be inferred from spectroscopic data in combination with the SFM topographical images. We illustrate our current understanding of the film structure with a molecular model.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources