Integrating genetic approaches into the discovery of anticancer drugs
- PMID: 9353181
- DOI: 10.1126/science.278.5340.1064
Integrating genetic approaches into the discovery of anticancer drugs
Abstract
The discovery of anticancer drugs is now driven by the numerous molecular alterations identified in tumor cells over the past decade. To exploit these alterations, it is necessary to understand how they define a molecular context that allows increased sensitivity to particular compounds. Traditional genetic approaches together with the new wealth of genomic information for both human and model organisms open up strategies by which drugs can be profiled for their ability to selectively kill cells in a molecular context that matches those found in tumors. Similarly, it may be possible to identify and validate new targets for drugs that would selectively kill tumor cells with a particular molecular context. This article outlines some of the ways that yeast genetics can be used to streamline anticancer drug discovery.
Similar articles
-
Desperately seeking genotype-selective anticancer agents.Chem Biol. 2003 Jun;10(6):477-8. doi: 10.1016/s1074-5521(03)00129-7. Chem Biol. 2003. PMID: 12837378
-
Pharmacogenetics of anticancer drugs in non-Hodgkin lymphomas.Br J Cancer. 2001 Nov 16;85(10):1425-31. doi: 10.1054/bjoc.2001.2130. Br J Cancer. 2001. PMID: 11720423 Free PMC article. Review.
-
Anticancer drug discovery in the future: an evolutionary perspective.Drug Discov Today. 2009 Dec;14(23-24):1136-42. doi: 10.1016/j.drudis.2009.09.006. Epub 2009 Oct 1. Drug Discov Today. 2009. PMID: 19800414 Review.
-
Yeast as a model system for anticancer drug discovery.Nat Rev Cancer. 2004 Jun;4(6):481-92. doi: 10.1038/nrc1372. Nat Rev Cancer. 2004. PMID: 15170450 Review. No abstract available.
-
Emerging approaches in molecular profiling affecting oncology drug discovery.Cold Spring Harb Symp Quant Biol. 2005;70:445-8. doi: 10.1101/sqb.2005.70.028. Cold Spring Harb Symp Quant Biol. 2005. PMID: 16869782 Review.
Cited by
-
Uncovering synthetic lethal interactions for therapeutic targets and predictive markers in lung adenocarcinoma.Oncotarget. 2016 Nov 8;7(45):73664-73680. doi: 10.18632/oncotarget.12046. Oncotarget. 2016. PMID: 27655641 Free PMC article.
-
An evolutionarily conserved synthetic lethal interaction network identifies FEN1 as a broad-spectrum target for anticancer therapeutic development.PLoS Genet. 2013;9(1):e1003254. doi: 10.1371/journal.pgen.1003254. Epub 2013 Jan 31. PLoS Genet. 2013. PMID: 23382697 Free PMC article.
-
Saccharomyces cerevisiae genetics predicts candidate therapeutic genetic interactions at the mammalian replication fork.G3 (Bethesda). 2013 Feb;3(2):273-82. doi: 10.1534/g3.112.004754. Epub 2013 Feb 1. G3 (Bethesda). 2013. PMID: 23390603 Free PMC article.
-
Biomarker Validation for Aging: Lessons from mtDNA Heteroplasmy Analyses in Early Cancer Detection.Biomark Insights. 2009 Nov 27;4:165-79. doi: 10.4137/bmi.s2253. Biomark Insights. 2009. PMID: 20029650 Free PMC article.
-
SynLethDB 2.0: a web-based knowledge graph database on synthetic lethality for novel anticancer drug discovery.Database (Oxford). 2022 May 13;2022:baac030. doi: 10.1093/database/baac030. Database (Oxford). 2022. PMID: 35562840 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous