Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1997 Oct;77(4):1081-132.
doi: 10.1152/physrev.1997.77.4.1081.

Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives

Affiliations
Review

Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives

M P Mattson. Physiol Rev. 1997 Oct.

Abstract

beta-Amyloid precursor protein (beta-APP), the source of the fibrillogenic amyloid beta-peptide (A beta) that accumulates in the brain of victims of Alzheimer's disease, is a multifunctional protein that is widely expressed in the nervous system. beta-Amyloid precursor protein is axonally transported and accumulates in presynaptic terminals and growth cones. A secreted form of beta-APP (sAPP alpha) is released from neurons in response to electrical activity and may function in modulation of neuronal excitability, synaptic plasticity, neurite outgrowth, synaptogenesis, and cell survival. A signaling pathway involving guanosine 3',5'-cyclic monophosphate is activated by sAPP alpha and modulates the activities of potassium channels, N-methyl-D-aspartate receptors, and the transcription factor NF kappa B. Additional functions of beta-APP may include modulation of cell adhesion and regulation of proliferation of nonneuronal cells. Alternative enzymatic processing of beta-APP liberates A beta, which has a propensity to form amyloid fibrils; A beta can damage and kill neurons and increase their vulnerability to excitotoxicity. The mechanism involves generation of oxyradicals and impairment of membrane transport systems (e.g., ion-motive ATPases and glutamate and glucose transporters). Genetic mutations or age-related metabolic changes may promote neuronal degeneration in Alzheimer's disease by increasing production of A beta and/or decreasing levels of neuroprotective sAPP alpha.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources