Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Nov;148(5 Suppl):S39-44.

The use of chromosomal aberrations in human lymphocytes for biological dosimetry

Affiliations
  • PMID: 9355855

The use of chromosomal aberrations in human lymphocytes for biological dosimetry

A A Edwards. Radiat Res. 1997 Nov.

Abstract

The scoring of chromosomal aberrations in human lymphocytes provides the most sensitive method known for biological dosimetry. By scoring dicentrics in the full genome of 500 cells, average whole-body doses of about 0.1 Gy of X or gamma rays may be detected and higher doses estimated. Acute doses above about 0.2 Gy can be estimated more accurately than similar chronic doses. For radiations of higher LET, for example those encountered in the space environment, the limits of detection in grays are lower. However, expressed in sieverts, the limits of detection are more nearly independent of radiation quality. This suggests for exposure to space radiations that it may be possible to convert the yield of aberrations directly to an average whole-body dose in sieverts, which can be used as an estimate of effective dose. The scoring of translocations involving about 20% of the genome in 1000 cells using fluorescence in situ hybridization painting techniques results in a reduced sensitivity at low doses so that acute X-ray doses of about 0.3 Gy and chronic doses of about 0.4 Gy are at the limit of measurement. Better sensitivity can be achieved by scoring more cells or by using more chromosomes in color combinations, but a final limit to these approaches exists because of the higher level of spontaneous translocations than dicentrics in cells of unirradiated persons.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources