Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1997 Nov;78(5):2388-95.
doi: 10.1152/jn.1997.78.5.2388.

Acetylcholine increases intracellular calcium of arterial chemoreceptor cells of adult cats

Affiliations
Free article
Comparative Study

Acetylcholine increases intracellular calcium of arterial chemoreceptor cells of adult cats

M Shirahata et al. J Neurophysiol. 1997 Nov.
Free article

Abstract

Acetylcholine increases intracellular calcium of arterial chemoreceptor cells of adult cats. J. Neurophysiol. 78: 2388-2395, 1997. Several neurotransmitters have been reported to play important roles in the chemoreception of the carotid body. Among them acetylcholine (ACh) appears to be involved in excitatory processes in the cat carotid body. As one of the steps to elucidate possible roles of ACh in carotid body chemoreception in the cat, we examined the effect of ACh on intracellular calcium concentration ([Ca2+]i) of cultured carotid body cells. The carotid body from adult cats was dissociated and cultured for up to 2 wk. [Ca2+]i was measured from clusters of cells with a microfluorometric technique using Indo-1 AM. Experiments were performed at 37 degrees C, and cells were continuously superfused with modified Krebs solutions equilibrated with 5% CO2-16% O2-79% N2. ACh (100 mu M) caused a marked increase in [Ca2+]i in approximately 70% of clusters, and the responses to 1-300 mu M of ACh were concentration dependent. The magnitude and kinetics of the ACh response were mimicked by the application of nicotine, whereas muscarinic agonists, pilocarpine, and muscarine failed to evoke a similar response. ACh-induced increase in [Ca2+]i was dependent on extracellular Ca2+: it was greatly reduced or completely abolished by a transient removal of extracellular Ca2+. The response was consistently but only partially reduced by caffeine (5 mM) or nifedipine (10 mu M). The effect of mecamylamine (100 mu M) was inhibitory but small. Moreover, the increase in [Ca2+]i in response to ACh was also observed in some clusters that did not respond to high K (100 mM) Krebs. These results suggest that ACh increases [Ca2+]i of cultured carotid body cells by activating neuronal nicotinic ACh receptors, leading to Ca2+ influx via nicotinic channels. In addition, other pathways such as Ca2+ influx through L-type calcium channels, perhaps secondary to membrane depolarization, and Ca2+ release from intracellular stores may participate in increasing [Ca2+]i in response to ACh. Muscarinic receptors appear to play only a small role, if any.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources