Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Aug;9(1):35-48.
doi: 10.1007/BF02789393.

A chimeric tyrosine/tryptophan hydroxylase. The tyrosine hydroxylase regulatory domain serves to stabilize enzyme activity

Affiliations

A chimeric tyrosine/tryptophan hydroxylase. The tyrosine hydroxylase regulatory domain serves to stabilize enzyme activity

S M Mockus et al. J Mol Neurosci. 1997 Aug.

Abstract

The neurotransmitter biosynthetic enzymes, tyrosine hydroxylase (TH), and tryptophan hydroxylase (TPH) are each composed of an amino-terminal regulatory domain and a carboxyl-terminal catalytic domain. A chimeric hydroxylase was generated by coupling the regulatory domain of TH (TH-R) to the catalytic domain of TPH (TPH-C) and expressing the recombinant enzyme in bacteria. The chimeric junction was created at proline 165 in TH and proline 106 in TPH because this residue is within a conserved five amino-acid span (ValProTrpPhePro) that defines the beginning of the highly homologous catalytic domains of TH and TPH. Radioenzymatic activity assays demonstrated that the TH-R/TPH-C chimera hydroxylates tryptophan, but not tyrosine. Therefore, the regulatory domain does not confer substrate specificity. Although the TH-R/TPH-C enzyme did serve as a substrate for protein kinase (PKA), activation was not observed following phosphorylation. Phosphorylation studies in combination with kinetic data provided evidence that TH-R does not exert a dominant influence on TPH-C. Stability assays revealed that, whereas TH exhibited a t1/2 of 84 min at 37 degrees C, TPH was much less stable (t1/2 = 28.3 min). The stability profile of TH-R/TPH-C, however, was superimposable on that of TH. Removal of the regulatory domain (a deletion of 165 amino acids from the N-terminus) of TH rendered the catalytic domain highly unstable, as demonstrated by a t1/2 of 14 min. The authors conclude that the regulatory domain of TH functions as a stabilizer of enzyme activity. As a corollary, the well-characterized instability of TPH may be attributed to the inability of its regulatory domain to stabilize the catalytic domain.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Neurochem. 1997 May;68(5):2220-3 - PubMed
    1. Nature. 1970 Aug 15;227(5259):680-5 - PubMed
    1. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3575-9 - PubMed
    1. Biochem Pharmacol. 1969 May;18(5):1071-81 - PubMed
    1. J Biol Chem. 1980 May 10;255(9):4137-43 - PubMed

Publication types

Substances

LinkOut - more resources